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Abstract

This paper addresses the problem of task allocation in heterogeneous distributed systems with the goal of maximizing the system reliability.
It first develops an allocation model for reliability based on a cost function representing the unreliability caused by the execution of tasks on the
system processors and the unreliability caused by the interprocessor communication time subject to constraints imposed by both the application
and the system resources. It then presents a heuristic algorithm derived from the well-known simulated annealing (SA) technique to quickly
solve the mentioned problem. The performance of the proposed algorithm is evaluated through experimental studies on a large number of
randomly generated instances. Indeed, the quality of solutions are compared with those derived by using the branch-and-bound (BB) technique.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Distributed systems have emerged as a powerful platform
for executing high performance parallel applications, alterna-
tive to the very expensive massively parallel machines. A par-
allel application could be divided into a number of tasks and
executed concurrently on different processors in the system. In
reality, however, the performance of a parallel application on
a distributed system is mainly dependent on the allocation of
the tasks comprising the application onto the available proces-
sors in the system, referred to as the task allocation problem.
If the allocation is not carefully implemented, processors in the
system may spend most of their time waiting for each other
instead of performing useful computations.

Several studies have been devoted to this problem with the
main concern on the performance measures such as minimizing
the total sum of execution and communication cost(time) [8,2]
or minimizing the application turnaround time [9,3]. Inherently,
distributed systems are more complex than centralized systems.
The added complexity could increase the potential for system
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failures. Hence, ensuring reliability of distributed systems is of
critical importance along with the task allocation.

Redundancy is the traditional technique to improve reliabil-
ity of distributed systems [15,13,14,18,5,21,22,16,10,19,4,6,7].
A distributed system is redundant if it possesses software
and/or hardware redundancy. In [15,13,14,18,5], software
redundancy (e.g., data/file replication among processors) is
considered and algorithms are proposed to seek the minimal
data/file replication while retaining the system reliability. In
[21,22,16,10,19,4,6,7], hardware redundancy (e.g., multiple
processors and communication links) is considered and some
models are developed under different levels of redundancy.
Inherently, redundancy is an expensive approach. Moreover,
many times, the system redundancy is not available or in-
feasible. In this situation, a distributed system may execute
a parallel application with high reliability if the tasks of the
application are assigned carefully onto appropriate processors
in the system taking into account the failure rates of both the
processors and the communication links. The obvious idea is
that, tasks with longer execution time should be allocated to
more reliable processors and edges of higher communication
times should be allocated onto the most reliable links (paths).
Hence, the main motivation of this paper is to introduce
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Fig. 1. An example of a distributed system and a task interaction graph. (a) A distributed system, (b) a task graph, and (c) execution costs.

reliability to distributed systems with no extra hardware and/or
software costs.

Some work has been done in the past for maximizing relia-
bility of distributed systems without redundancy [17,11,20]. In
[17,11], optimal approaches were developed based on the well
known A∗ algorithm. But, these approaches are exponential in
nature and may demand heavy computation time. In [20], a
heuristic approach, based on the well-known genetic algorithm
(GA), was developed to quickly find a near optimal allocation.
In this paper, an allocation algorithm based on the simulated
annealing (SA) technique is developed to allocate tasks onto
processors of a distributed system with the goal of maximizing
the system reliability. Unlike the other approaches, this paper
takes into account several kinds of constraints and characteris-
tics that are essential to both the application and the distributed
system such as different requirements of the application tasks
and heterogeneity of the system resources. The performance
of the proposed algorithm is evaluated through experimental
studies on a large number of randomly generated instances.
Furthermore, the quality of solutions are compared with those
derived by using the branch-and-bound (BB) technique.

The rest of this paper is organized as follows. Section 2 de-
scribes the task allocation problem. Section 3 provides an ex-
plicit cost function to the distributed system reliability while
Section 4 presents an allocation model for reliability. Section 5
presents an allocation algorithm derived from the well known
simulated annealing technique. Section 6 discusses the simula-
tion results while Section 7 summarizes the paper conclusions.

2. Problem statement

The problem being addressed in this paper is concerned with
allocating tasks of a parallel application onto processors of a
distributed system with the goal of maximizing the system re-
liability. The distributed system consists of a set of heteroge-
neous computers interconnected via a communication network
as shown in Fig. 1(a). Each computer has computation facility
and its own memory while the communication network has a
limited communication capacity. Indeed, a failure rate is asso-
ciated with each component (processor and link) in the system.
On the other hand, a parallel application is represented by a
task interaction graph G(V, E), as shown in Fig. 1(b). Where,

V represents a set of tasks and E represents a set of edges. Each
task i ∈ V is labeled by memory and processing load require-
ments while each arc (i, j) ∈ E is labeled by communication
requirements among tasks. Indeed, a vector is associated with
each task representing the execution time of the task at differ-
ent processors in the system, as shown in Fig. 1(c). Note that, if
a task cannot be executed at a particular processor, the corres-
ponding element in thevectoris set to ∞,i.e.,very large value.

Briefly, we are given a set of M tasks representing a parallel
application to be executed on a distributed system of N proces-
sors. Tasks of the given application require certain computer
resources such as computational load and memory capacity.
They also communicate at a given rate. On the other hand, the
system resources are capacitated and a failure rate is associ-
ated with each component. The purpose is to allocate each of
the M tasks to one of the N processors such that the overall
system reliability is maximized, the requirements of tasks and
edges are met, and the capacities of the system resources are
not violated.

3. Preliminaries

In a distributed system, each component exists in one of two
states: operational or faulty. In order for a parallel application to
run successfully on a distributed system, each processor must
be operational during the time of processing its tasks and each
path must be operational during the active period of data com-
munication between the terminal processors of the path. Hence,
successful execution of the application is mainly dependent on
reliability of the system components (processors and links) and
on the distribution of the application tasks to the available pro-
cessors in the system. The following subsections first present
reliability expressions to the system components and then pro-
vide an explicit cost function to the system reliability. To do
so, let X be an M × N binary matrix corresponding to an as-
signment of M tasks onto N processors such that an element
Xip = 1 if a task i is assigned to a processor p and Xip = 0
otherwise.

3.1. Processor reliability

A processor reliability Rp is the probability that the processor
p is operational for execution of tasks that are assigned to it.
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Define �p as the failure rate of a processor p during a time
interval t, then the reliability of the processor p in the time t
is e−�pt [6,7,17,11,20]. Under a task assignment X, the time t
represents the time required to execute all the tasks assigned to
p. Let Cip be the time of processing a task i on a processor p,
then the processor reliability may be formulated as

Rp = e−�p

∑
i CipXip .

The summation gives the total time elapsed in executing all the
tasks that are assigned to the processor p.

3.2. Path/link reliability

A path reliability Rpq is the probability that the path pq
is operational for communicating data between the terminal
processors of the path. A path is sequence of communication
links from a sender to a receiver. Define �pq as the failure rate
of a path pq during a time interval t, then the reliability of the
path pq in the time t is e−�pq t [6,7,17,11,20]. Under a task
assignment X, the time t represents the interval required for data
communication between the terminal processors of the path pq.
Let Cijpq be the time of transferring data between tasks i and
j if they are assigned to different processors p and q, then the
path reliability may be formulated as

Rpq = e
−�pq

∑
i

∑
j �=i CijpqXipXjq .

The summation gives the total time required for communicating
data between the terminal processors (p and q) of the path pq.

From the components reliabilities, it is clear that, allocating
tasks of large execution times to more reliable processors is a
good approach to increase the execution reliability in the sys-
tem. Also, allocating edges of higher communication times to
more reliable links is a good approach to increase the commu-
nication reliability in the system.

3.3. System reliability

Reliability of a distributed system Rsys may be defined as
the probability that the system can run the entire application
successfully [6,17,11]. In other words, the system reliability is
the product of the components reliabilities. That is, the product
of the probability that each processor be operational during the
period of tasks execution and the probability that each path/link
be operational during the period of interprocessor communica-
tion. Hence, the system reliability may be formulated as

Rsys =
[∏

p

Rp

] ⎡
⎣∏

p

∏
q �=p

Rpq

⎤
⎦ = e−Z,

where

Z =
∑
p

∑
i

�pCipXip +
∑
p

∑
q �=p

∑
i

∑
j �=i

�pqCijpqXipXjq.

The first term of the function Z represents the unreliability
caused by the execution of tasks on the system processors of
various reliabilities and the second term reflects the unreliability

caused by the interprocessor communication through different
links/paths of various reliabilities.

4. Allocation model for reliability

It is clear from the above discussion that, maximizing reli-
ability of a distributed system is equivalent to minimizing the
unreliability cost function Z. However, in order to achieve a
satisfactory allocation, additional constraints should be consid-
ered with the cost function to meet the application requirements
and not violate the availability of the system resources. In the
following, the allocation constraints are first described and then
an allocation model for reliability is presented.

4.1. Allocation constraints

The allocation constraints depend on the characteristics of
both the application involved (such as tasks requirements and
inter-task communication requirements) and on the system
resources including the computation speed of processors, the
availability of memory and communication network capac-
ity. To describe the allocation constraints, let TCp denote the
set of tasks that are mapped to a processor p under a task
assignment X.

• No redundancy: This paper considers a model where a task
must be allocated to exactly one processor, i.e., no software
redundancy. That is, the following equality must hold with
each task i: ∑

p

Xip = 1.

• Processing load constraints: For a task assignment X, the
total processing load required by all tasks assigned to a pro-
cessor p must be less than or equal to the available compu-
tational load of p. Let pi denote the processing load require-
ments of a task i and let Pp denote the available processing
load of a processor p, then the following inequality must hold
at each processor p. ∑

i∈TCp

pi �Pp.

• Memory constraints: For a task assignment X, the total mem-
ory required by all tasks assigned to a processor p must be
less than or equal to the available memory capacity of p. De-
fine mi as the amount of memory required by a task i and Mp

as the available memory at a processor p, then the following
inequality must hold at each processor p.∑

i∈TCp

mi �Mp.

• Communication capacity constraints: For a task assignment
X, the total communication capacity required by all edges
mapped to a communication link/path pq must be less than
or equal to the available communication capacity of the path.
Let bij denote the amount of communication capacity re-
quired to communicate data between tasks i and j if they are



1262 G. Attiya, Y. Hamam / J. Parallel Distrib. Comput. 66 (2006) 1259–1266

assigned to different processors p and q, and let Rpq denote
the available communication capacity of the link/path pq.
Then the following inequality must hold at each communi-
cation link/path pq.∑

i∈TCp

∑
j �=i,j∈TCq

bij �Rpq.

4.2. Reliability model

From the unreliability cost function Z and the above con-
straints, the allocation model for reliability may be formulated
as follows:

min Z = ∑
p

∑
i

�pCipXip

+ ∑
p

∑
q �=p

∑
i

∑
j �=i

�pqCijpqXipXjq

s.t. ∑
p

Xip = 1 ∀ tasks i,∑
i∈TCp

pi �Pp ∀ processors p,∑
i∈TCp

mi �Mp ∀ processors p,∑
i∈TCp

∑
j �=i,j∈TCq

bij �Rpq ∀ paths pq.

The above model defines an integer programming problem. An
optimal solution to this problem may be found by enumerating
all possible allocations. But, for N processors and M tasks, this
requires O(NM) computation time. Hence, this paper presents
a heuristic algorithm to quickly solve the mentioned problem.

5. Allocation algorithm

This section presents a heuristic algorithm derived from the
well known SA technique. It first defines the basic concepts of
the SA and then explains how it may be employed for solving
the allocation problem in terms of reliability.

5.1. Basic concepts

SA is a global optimization technique which attempts to find
the lowest point in an energy landscape [12,1]. The technique
was derived from the observations of how slowly cooled molten
metal can result in a regular crystalline structure. The distinctive
feature of the algorithm is that it incorporates random jumps to
potential new solutions. This ability is controlled and reduced
as the algorithm progresses.

Clearly, the SA emulates the physical concepts of tempera-
ture and energy to represent and solve the optimization prob-
lems. The objective function of the optimization problem is
treated as the energy of a dynamic system while the temperature
is introduced to randomize the search for a solution. The state
of the dynamic system being simulated is related to the state
of the system being optimized. The procedure is the follow-
ing: the system is submitted to a high temperature and is then
slowly cooled through a series of temperature levels. At each
level, the algorithm searches for the system equilibrium state

through elementary transformations which will be accepted if
they reduce the system energy. However, as the temperature
decreases, smaller energy increments may be accepted and the
system eventually settles into a low energy state. This property
makes the algorithm to escape from a local optimal configu-
ration and close, if not identical, to the global minimum. The
probability of acceptance an uphill move is a function of the
temperature and the magnitude of the increase �. The algo-
rithm presented in this paper uses exp(−�/T ), where T is the
temperature.

5.2. Simulated annealing algorithm

The algorithm starts by randomly selecting an initial solution
s and computes the energy/cost Es at the current solution s.
After setting an initial temperature T, a neighbor finding strategy
is invoked to generate a neighbor solution n to the current
solution s and compute the corresponding energy/cost En. If
the energy En at the neighbor solution n is lower than the
current energy Es , then the neighbor solution is accepted as a
current solution. Otherwise, a probability function exp(−�/T )

is evaluated to determine whether the neighbor solution may
be accepted as a current solution, where � = En − Es . After a
thermal equilibrium is reached at the current temperature T, the
value of T is decreased by a cooling factor � and the number
of inner repetitions is increased by an increasing factor �. The
algorithm continues from the current solution point searching
for a thermal equilibrium at the new temperature level. The
whole process terminates when either the lowest energy point
is found or no upward/downward jumps have been taken for a
number of successive thermal equilibrium. The structure of the
algorithm may be sketched as follows:

Randomly select an initial solution s;
Compute the cost at this solution Es;
Select an initial temperature T;
Select a cooling factor � < 1;
Select an initial chain nrep;
Select a chain increasing factor � > 1;
Repeat

Repeat
Select a neighbor solution n to s;
Compute the cost at n, En;
� = En − Es;
If � < 0,
s = n; Es = En;

Else
Generate a random value x in the range (0,1);
If x < exp(−�/T ),
s = n; Es = En;

End
End

Until iteration = nrep (equilibrium state at T)
Set T = � ∗ T ;
Set nrep = � ∗ nrep;

Until stopping condition = true
Es is the cost and s is the solution.
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5.3. Applying the algorithm

To implement the SA algorithm, a number of decisions must
be made. These decisions are concerned with the choice of an
energy function, a cooling schedule, a neighborhood structure
and the choice of annealing parameters such as an initial tem-
perature, a cooling factor, an increasing factor of the inner loop
repetitions and a stopping condition. Each decision need to be
made with care as they effect the speed of the algorithm and
the quality of solutions.

5.3.1. Energy function
The energy function is the heart of the SA algorithm. It shapes

the energy landscape and affects how the algorithm reaches
a solution. For the allocation problem, the energy function is
complex. It represents the objective function to be optimized
and it has to penalize the following characteristics:

(i) a task redundancy,
(ii) a processor with a load utilization � 100%,

(iii) a processor with a memory utilization � 100%,
(iv) a link/channel with a communication capacity utiliza-

tion � 100%.

These characteristics should be penalized to achieve the appli-
cation requirements and validate the availability of the system
resources. In our case, the first property is penalized by con-
structing an allocation vector A(M, 1) whose element A(i) rep-
resents the processor p where the task i is allocated. At each
movement of neighboring solutions, one of the tasks is moved
from one processor to another. Therefore, each task cannot be
allocated to more than one processor. The second property is
penalized by comparing the processing load requirements of all
the tasks mapped to a processor p and the available processing
load of p. An energy component Ep is determined such that
Ep = 1 if the processing load requirements exceed the avail-
able load of p and Ep = 0 otherwise. Similarly, the third and
the fourth properties are penalized. The third property is penal-
ized by returning an energy component Em such that Em = 1 if
the memory requirements of all the tasks mapped to a proces-
sor p exceed the available memory at p and Em = 0 otherwise.
Also, the fourth property is penalized by returning an energy
component Ec such that Ec = 1 if the communication capacity
requirements of all edges mapped to a link/path pq exceed the
available capacity of the path and Ec = 0 otherwise. Let k be
a penalty factor, then the energy function E may be formulated
as follows:

E = Z + k(Ep + Em + Ec).

5.3.2. Neighborhood structure
The neighborhood defines the procedure to move from a so-

lution point to another solution point. In this paper, the neigh-
bor function is simple. A neighboring solution is obtained by
choosing at random a task i from the current allocation vector
A and assign it to another randomly selected processor p.

5.3.3. Cooling schedule
The cooling schedule defines the procedure to reduce the

temperature as an equilibrium state is reached. This process is
governed by the number of inner loop repetitions nrep and the
cooling rate �. In this paper, a geometric cooling schedule is
used. The temperature T is reduced so that T = � ∗ T , where
� is a constant less than 1. At each temperature, the chain (the
number of repetitions of the inner loop) is updated in a similar
manner: nrep = � ∗ nrep, where � is a constant greater than 1.

5.3.4. Annealing parameters
The annealing parameters are concerned with the choice of

an initial temperature T, a cooling factor �, an increasing factor
�, and a stopping condition. These factors have a significant
effect on the success of the annealing algorithm. Note that, the
best values of these parameters may differ from application to
application and possibly from instance to instance. The anneal-
ing parameters may be described as in the following:

• Initial temperature T : The initial temperature represents one
of the very important parameters in the SA algorithm. If the
initial temperature is very high, the execution time of the
algorithm becomes very long. On the other hand, if the ini-
tial temperature is low, poor results are obtained. The initial
temperature must be hot enough to allow an almost free ex-
change of neighboring solutions. One approach is that the
system can be rapidly heated fairly until the proportion of
accepted moves to rejected moves reaches a required value.
The proportion of accepted moves, which represents a suit-
ability volatile system, to rejected moves can be decided be-
forehand. At this point, the cooling schedule can start. This
method corresponds to the physical analogy in which a sub-
stance is heated quickly to its liquid state before being cooled
slowly according to the annealing schedule. In our case, the
initial temperature is set after executing a sufficiently large
number of random moves, such that the worst move would
be allowed. Let T be the initial temperature, cr and ci be
numbers corresponding to cost reduction and cost increase,
respectively, ca be the average cost increase value of the ci

trials, and a0 be the desired initial acceptance value. Then,
the following relation may be written

a0 = cr + cie
−ca/T

cr + ci

which gives the initial temperature as

T = − ca

log( cr

ci
(a0 − 1) + a0)

.

• Cooling factor �: The cooling factor � represents the rate at
which the temperature T is reduced. This factor is vital to the
success of any annealing process. A rapid reduction yields a
bad local optimum and slow cooling yields expensive in time.
Most reported successes in the literature use values between
0.8 and 0.95 with bias to the higher end of the range. In this
paper, the cooling rate is chosen to be � = 0.90.

• Increasing factor �: The increasing factor � represents the
rate at which the inner number of repetitions is increased
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as the temperature is reduced. It is important to spend long
time at lower temperature to ensure that a local optimum
has been fully explored. In this paper, the increasing factor
� is chosen to be � = 1.05. The lower the temperature, the
bigger the number of inner loop repetitions.

• Stopping condition: The criterion for stopping can be ex-
pressed either in terms of the temperature parameter or in
terms of the steady state of the system at the current solu-
tion. Other rules attempt to identify a stopping condition by
specifying that a number of iterations or temperature levels
must have passed without an acceptance. The simplest rule
is to specify the total number of iterations and stop when this
number has been completed. In our case, the final tempera-
ture is chosen to give a low acceptance value.

6. Performance evaluation

The proposed algorithm is coded in Matlab and tested for a
large number of randomly generated task graphs that are allo-
cated onto a distributed system. The simulation program con-
tains two major parts. The first part reads as input the number
of tasks M and the number of processors N. It then generates
a task graph and equivalent parameters: tasks execution times,
memory and processing load requirements, and communica-
tion capacity requirements. Considering a particular topology
of a distributed system, the program also generates the system
parameters: available memory, processing load and commu-
nication capacity. For generating the parameters, the program
uses the following test data which is similar to the one used
in [17,11]. The failure rates of processors and communication
links are given in the ranges [0.0005–0.00010] and [0.00015–
0.00030], respectively. The time of processing a task at dif-
ferent processors is given in the range [15–25]. The memory
requirements of each task is given in the range [1–10]. The
value of data to be communicated between tasks is given in the
range [5–10]. The average task connectivity (i.e., the average
number of neighbors to a task) is 3. The second part of the
simulation program formulates the problem and applies the SA
algorithm to derive a task allocation and the associated system
reliability.

For evaluation, two system configurations are considered: a
distributed system of four computers with bus topology and a
distributed system of six computers with fully connected topol-
ogy. Furthermore, five sets of randomly generated problems
with sizes M = 4, 8, 12, 16 and 20 are used. For each problem
set, five task graphs of the same size are generated randomly.
For each graph, 10 simulation runs are conducted by the SA
algorithm and the average values of both the unreliability cost
function Z and the algorithm computation time are computed
over these simulation runs. The generated instances are also
solved by using the BB technique [2,3] to test the quality of
solutions obtained by the SA algorithm.

Tables 1 and 2 summarize the simulation results by deploying
the SA and the BB algorithms to solve the generated problems.
Table 1 presents the results for the case of four computers with
bus topology while Table 2 shows the results for the case of
six computers with fully connected topology. In the tables, the

Table 1
Simulation results for the case of four computers of bus topology

Case (M, N) ZSA timeSA (s) ZBB timeBB (s) �Z%

1 (4,4) 0.0109 3.9798 0.0109 0.5000 0.00
2 (4,4) 0.0188 5.3467 0.0188 0.8600 0.00
3 (4,4) 0.0223 5.5733 0.0223 0.9220 0.00
4 (4,4) 0.0110 8.2388 0.0110 0.5780 0.00
5 (4,4) 0.0362 5.0735 0.0362 1.5780 0.00

1 (8,4) 0.0531 13.1015 0.0531 12.0470 0.00
2 (8,4) 0.0160 22.4501 0.0160 10.8600 0.00
3 (8,4) 0.0313 7.7907 0.0313 13.1090 0.00
4 (8,4) 0.0242 26.2031 0.0242 14.2650 0.00
5 (8,4) 0.0140 34.0092 0.0140 22.9690 0.00

1 (12,4) 0.0230 26.1799 0.0228 39.6400 0.88
2 (12,4) 0.0257 16.5968 0.0256 49.7190 0.39
3 (12,4) 0.0367 14.3721 0.0363 30.2810 1.10
4 (12,4) 0.0277 30.8140 0.0274 40.3280 1.09
5 (12,4) 0.0365 22.7845 0.0365 46.7030 0.00

1 (16,4) 0.0481 16.8673 0.0470 120.4210 2.34
2 (16,4) 0.0390 19.5375 0.0378 64.1090 3.17
3 (16,4) 0.0325 44.8157 0.0317 102.8120 2.52
4 (16,4) 0.0565 17.9219 0.0544 99.8590 3.86
5 (16,4) 0.0383 27.4424 0.0372 331.9850 2.96

1 (20,4) 0.0388 25.1154 0.0374 255.6090 3.74
2 (20,4) 0.0494 18.3970 0.0481 163.5780 2.70
3 (20,4) 0.0296 29.2769 0.0285 193.7030 3.86
4 (20,4) 0.0481 21.3857 0.0473 291.3430 1.69
5 (20,4) 0.0449 26.8031 0.0432 618.3280 3.94

first column indicates the problem sets, where M is the number
of tasks and N is the number of processors. The second and
the fourth columns represent the values of the unreliability cost
function Z obtained by the SA and the BB algorithms, respec-
tively. The computing times for the two algorithms are listed in
the third and the fifth columns, respectively. The last column
represents the average deviation �Z in percentage between the
suboptimal and the optimal solutions; �Z = ZSA−ZBB

ZBB
× 100,

where ZSA and ZBB are the near optimal and optimal values of
the unreliability cost function Z. The results show that, unlike
the exponential nature of the BB technique, the computation
time of the SA algorithm slowly increases with the problem
size. Furthermore, the SA algorithm quickly finds a near opti-
mal allocation with average deviation not exceeding 4% from
the global optimum solutions that are obtained by applying the
BB technique.

Table 3 shows the effect of task allocation on the computing
time and on the system reliability. Considering a parallel appli-
cation of eight tasks and a distributed system of four computers
with bus topology, the table shows the unreliability cost func-
tion Z, the computing time (i.e., the total sum of execution and
communication times) and the system reliability at 10 valid al-
locations. As shown in the table, at constant failure rates of the
system components, the system reliability is changed with the
task distribution. This means that, reliability of a distributed
system depends not only on the reliability of its components
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Table 2
Simulation results for the case of six computers of fully connected topology

Case (M, N) ZSA timeSA (s) ZBB timeBB (s) �Z%

1 (4,6) 0.0077 4.9753 0.0077 3.4380 0.00
2 (4,6) 0.0132 3.7875 0.0131 6.8120 0.76
3 (4,6) 0.0099 4.4562 0.0099 3.7030 0.00
4 (4,6) 0.0074 5.3529 0.0074 2.8440 0.00
5 (4,6) 0.0098 7.1657 0.0098 3.8130 0.00

1 (8,6) 0.0148 12.1626 0.0144 27.2040 2.78
2 (8,6) 0.0151 17.7281 0.0150 35.0940 0.67
3 (8,6) 0.0172 8.5517 0.0171 54.6090 0.58
4 (8,6) 0.0130 14.4468 0.0130 33.8440 0.00
5 (8,6) 0.0144 25.9892 0.0143 90.2340 0.70

1 (12,6) 0.0186 29.0999 0.0186 116.0160 0.00
2 (12,6) 0.0228 23.8343 0.0225 285.2650 1.33
3 (12,6) 0.0175 19.6750 0.0173 115.4530 1.16
4 (12,6) 0.0229 30.1034 0.0225 307.6250 1.78
5 (12,6) 0.0183 29.7455 0.0178 254.5780 2.23

1 (16,6) 0.0250 34.9531 0.0246 1016.30 1.63
2 (16,6) 0.0247 27.9514 0.0241 1553.70 2.49
3 (16,6) 0.0242 31.9986 0.0233 1189.40 3.86
4 (16,6) 0.0226 30.1076 0.0222 460.1710 1.80
5 (16,6) 0.0318 32.5439 0.0306 1028.10 3.92

Table 3
Effect of task allocation on the computing time and the system reliability

Iteration Z Computing time System reliability

1 0.0211 165 0.9791
2 0.0205 158 0.9797
3 0.0195 160 0.9806
4 0.0190 157 0.9812
5 0.0186 145 0.9815
6 0.0179 151 0.9822
7 0.0162 159 0.9839
8 0.0152 162 0.9849
9 0.0150 154 0.9851

10 0.0140 149 0.9861

(hardware and software) but also on the distribution of the tasks
on the available processors in the system. Hence, a parallel ap-
plication can be executed with high reliability if the various
tasks of the application are assigned carefully to the appropri-
ate processors in the system considering the failure probabil-
ities of both the processors and the communication links. In
the table, iteration number 5 achieves the minimum computing
time, i.e., the minimum execution and communication times,
which is 145 but the system reliability equals 0.9815. On the
other hand, iteration number 10 achieves the optimal system
reliability which is 0.9861 but the computing time equals 149.
Hence, a trade off exists between minimizing the total comput-
ing time and maximizing the system reliability and a compro-
mise should be made between these conflicting objectives with
the task allocation problem.

7. Conclusions

The task allocation problem in terms of reliability is inves-
tigated in this paper. The problem is first formulated as an op-
timization problem composed of a cost function representing
the unreliability caused by the execution of tasks on the system
processors and the unreliability caused by the interprocessor
communication times subject to constraints imposed by both
the application and the system resources. An allocation algo-
rithm based on the simulated annealing (SA) technique is then
developed to quickly find a near optimal solution to this prob-
lem. The performance of the algorithm is evaluated through
experimental studies on a large number of randomly gener-
ated instances and the quality of solutions are compared with
those derived by using the BB technique. The simulation results
show that, in most of the tested cases, the SA algorithm finds
a near optimal allocation efficiently with average deviation not
exceeding 4% from the global optimum solutions; therefore,
it is a desirable approach to solve the allocation problem. The
next step of this work is to develop an exact algorithm to find
an optimal allocation that maximizes the system reliability in
acceptable computation time.
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