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Abstract 
Real-time systems refer to systems that have real-time requirements for interacting with a human operator or other 

agents with similar timescales. An efficient simulation of real-time systems requires a model that is accurate enough to 
accomplish the simulation objective and is computationally efficient. In this paper a real time modeling system for dynamic 
systems will be studied. Normally, Real time modeling can be classified into  hardware and software systems, but this work 
focuses on the software techniques and systems. Finally a demonstration example for real time simulator  has been 
simulated for complex dynamic system, namely a small nuclear fusion device (Egyptor Tokamak). The obtained results 
agree well with published work. Such simulator can be considered an imperative requirement  for predicative control tasks. 

 
1. Introduction 

 
Real-time simulation has been used for many years for operators training and design or testing of hardware and software 

in situations in which it is inconvenient to use the real system [1-4]. Examples include flight simulators for pilot training, 
plant simulators for operator training, and a wide range of applications in which the simulator is used to test hardware and 
embedded software in the loop. One of the key parameters of a real-time simulator is the frame rate. Many real time 
simulators, are used for operator training, perform satisfactorily with frame times in the range 10 to 100ms [5]. All the 
calculations needed to advance the simulation by one frame must be completed, along with all necessary data transfers 
within one frame. In some applications real-time simulation is used  as a test environment for real hardware or embedded 
software referred to as the system under test (SUT) [6]. In some cases much shorter frame times (<10µs) are required 
because of the high-frequency dynamics of both the simulated system and (SUT). Such applications are found, for example, 
in aerospace, automotive and power electronic systems [7], [8]. The techniques described here focus on power electronic 
systems, but they are equally relevant to other applications requiring similar frame times. In the literatures, many dynamic 
systems applications can be found such as robotics, industrial production systems, and nuclear power plants [9-12].  

     In this paper we will focus on the nuclear power plant application. This type of application can be classified in two 
main categories namely nuclear fusion experiments and fission reactors. The structure of this paper is as follows. Section 2 
gives an overview about real-time modeling. In section 3 the details of case study is introduced. Section 4 describes the 
proposed simulator for our case study. The result of the proposed simulator is shown in section 5. Finally, some conclusion 
are put forward in Section 6. 

 
2. Modeling Techniques of Real-Time Systems 

  

     Real-time systems differ from traditional data processing systems in that they are constrained by certain nonfunctional 
requirements (e.g., dependability and timing). Although real-time systems can be modeled using the standard structured 
design methods, these methods lack explicit support for expressing the real-time constraints. Standard structured design 
methods incorporate a life cycle model in which the following activities are recognized: 



(1) Requirements definition. An authoritative specification of the system’s required functional and  nonfunctional 
behavior is produced. 

(2) Architectural design. A top-level description of the proposed system is developed. 
(3) Detailed design. The complete system design is specified. 
(4) Coding. The system is implemented. 
(5) Testing. The efficacy of the system is tested. 
 

Real time simulation systems can be implemented via software or hardware. For hard real-time systems, this has the 
significant disadvantage that timing problems will be recognized only during testing, or worse, after deployment. 
Researchers have pointed out that the time requirements should be addressed in the architectural design phase [13]. The 
architectural design activities are defined as the logical architecture design activity, and the physical architecture design 
activity.  The logical architecture embodies commitments that can be made independently of the constraints imposed by the 
execution environment, and is primarily aimed at satisfying the functional requirements. The physical architecture takes 
these functional requirements and other constraints into account, and embraces the non-functional requirements. The 
physical architecture forms the basis for asserting that the application’s nonfunctional requirements will be met once the 
detailed design and implementation have taken place [14]. The physical architecture design activity addresses timing (e.g., 
responsiveness, orderliness, temporal predictability and temporal controllability) and dependability requirements (e.g., 
reliability, safety and security), and the necessary schedulability analysis that will ensure that the system once built will 
function correctly in both the value and time domains. Appropriate scheduling paradigms are often integrated to handle 
nonfunctional requirements. 

 
3. Methods for Modeling dynamic systems 

      
Methods for modeling dynamic systems can be classified into different categories. The first one is  mathematical models 

and the second is heuristics models. Also there are some methods which use a combination between the previous two 
methods called hyperid  methods. 

 
3.1.1. Mathematical Methods.  In this method the system can be governed by a set of equations called system equations. 
Before discussing dynamic models, let us recall that time-invariant dynamic systems are in general modeled by static 
functions, by using the concept of the system’s state. Given the state of a system and given its input, we can determine what 
the next state will be. In the discrete-time setting we can write 

( 1) ( ( ), ( ))x k f x k u k+ =                                                                                                               (1) 
where x(k) and u(k) are the state and the input at time k, respectively, and f is a static function, called the state-transition 

function.  
  Dynamic models of different types can be used to approximate the state-transition function. As the state of a process is 

often not measured, input-output modeling is usually applied. The most common is the NARX (Nonlinear Auto Regessive 
with exogenous input) model: 

( 1)  ( ( ),  ( -1)..., ( - 1),  ( ),  ( -1),..., ( - 1))y k f y k y k y k ny u k u k u k nu+ = + +                                (2)   

Here ( ),&,  (  -    1)  ( ),  &,  ( - 1) y k y k ny and u k u k nu+ + denote the past model outputs and inputs respectively and ny, 
nu are integers related to the model order (usually selected by the user).  

     In this sense, we can say that the dynamic behavior is taken care of by external dynamic filters added to the dynamic 
system. In equation (2), the input dynamic filter is a simple generator of the lagged inputs and outputs, and no output filter is 
used. Since the dynamic models can approximate any smooth function to any degree of accuracy, models of type, given by 
equation (2), can approximate any observable and controllable modes of a large class of linear or discrete-time nonlinear 
systems.  



3.1.2. Heuristics Methods.  In this method we can not describe the behavior of the system by a known set of equations. But 
we need fitting methods to get approximation. So we need information about the system from the field of this system. Two 
common sources of information for building dynamic models are the prior knowledge and data process measurements. The 
prior knowledge can be of a rather approximate nature (qualitative knowledge, heuristics), which usually originates from 
“experts”, i.e., process designers, operators, etc. In this sense, dynamic models can be regarded as simple dynamic expert 
systems. For many processes, the data that are available as records of the process operation or special identification 
experiments can be designed to obtain the relevant data. Building dynamic models from data involves methods based on 
dynamic logic and approximate reasoning, but also ideas originating from the field of neural networks, data analysis and 
conventional systems identification. The acquisition or tuning of dynamic models by means of data is usually termed 
dynamic identification. 

In the literature there are two main approaches to the integration of knowledge and data in a dynamic model. These 
approaches can be distinguished as: 
(1) The expert knowledge expressed in a verbal form is translated into a collection of If–Then rules. In this way, a certain 

model structure is created. Parameters in this structure  (membership functions, consequent singletons or parameters) 
can be fine-tuned using input output data [15].  

(2) No prior knowledge about the system under study is initially used to formulate the rules, and a dynamic model is 
constructed from data. It is expected that the extracted rules and membership functions can provide a posteriori 
interpretation of the system’s behavior. Related to which one of the previous an expert can confront this information 
with his own knowledge, can modify the rules, or supply new ones, and can design additional experiments in order to 
obtain more informative data. These techniques, of course, can be combined, depending on the particular application 
 

4. Selection of model Structure and parameters 
 
     With regard to the design of dynamic models, two basic items are distinguished: the structure and the parameters of 

the model. The structure determines the flexibility of the model in approximation (unknown) mappings. The parameters are 
then tuned (estimated) to fit the data at hand. A model with a rich structure is able to approximate more complicated 
functions, but, at the same time, has worse generalization properties. Good generalization means that a model fitted to one 
data set will also perform well on another data set from the same process. In dynamic models, structure selection involves 
the following choices: 

1. Input and output variables. With complex systems, it is not always clear which variables should be used as inputs to 
the model. In the case of dynamic systems, one also must estimate the order of the system. For example the input-output 
NARX model, this means to define the number of input and output lags ny and nu, respectively. Prior knowledge, insight in 
the process behavior and the purpose of modeling are the typical sources of information for this choice. Sometimes, 
automatic data-driven selection can be used to compare different choices in terms of some performance criteria. 

2. Structure of the rules. This choice involves the model type and the antecedent form . Important aspects are the purpose 
of modeling and the type of available knowledge. 

3. Number and type of membership functions for each variable. This choice determines the level of detail (granularity) of 
the model. Again, the purpose of modeling and the detail of available knowledge, will influence this choice [16].  

4. Type of the inference mechanism, connective operators. These choices are restricted by the type of dynamic model 
[17].  

     To facilitate data-driven optimization of dynamic models (learning), differentiable operators (product, sum) are often 
preferred to the standard min and max operators. After the structure is fixed, the performance of a dynamic model can be 
fine-tuned by adjusting its parameters. Tunable parameters models are the parameters of antecedent and consequent 
membership functions (determine their shape and position) and the rules (determine the mapping between the antecedent 
and consequent dynamic regions).  
     One of the most parameter to select the model is model accuracy which define the ability of a model to capture the 
system at the right level of detail and to achieve the simulation objective within an allowable error bound. Computational 
efficiency involves the satisfaction of the real-time requirements to simulate the system, in addition to the efficiency of 
model computation. In existing applications, it is a user’s responsibility to construct the model appropriate for the 
simulation task.  



 
5. Case Study: Small Nuclear Fusion Device  Construction  

 
Many fusion-related plasma experiments use magnetic field confinement to contain the charged plasma. A toroidal 

device called a Tokamak, which is first developed in Russia, is the most successful device yet found for magnetic 
confinement of plasma [18], [19]. In this device a combination of two magnetic fields is used to confine and stabilize the 
plasma, a strong toroidal field (TF), is produced by the current in the windings, and a weaker "poloidal" field, is produced 
by the toroidal current (current in the plasma). In addition to confining the plasma, the toroidal current is used to heat it. The 
resultant helical field lines spiral around the plasma and keep it from touching the walls of the vacuum chamber. There are 
many small fusion experiments used as hardware simulator for large fusion projects like (TEXT, TEXTOR, ASDEX) [20]. 
The Egyptor tokamak is one from these experiments [21-23].  

   The Egyptor is a small tokamak device of noncircular cross section (R=30 cm, a=10 cm) intended primarily to study of 
plasma-wall interaction. Figure  (1) shows a block diagram for Egyptor tokamak. Studies can be carried out in this small 
machines , the results of these studies are key in making predictions for larger devices [24]. The detailed balance of (particle 
production and loss), and of (power input and loss) determine the state of the plasma in a tokamak. The particle balance 
equation [25] is basically single-ion-species plasma, setting ne = ni = n, is given by 
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where <σv> i is ionization rate of the neutral particles that fuel the plasma, ne is the electron density, ni is the ion density,  
n  is the particle density, nn is the neutral density, r is the minor radius, and DA is the diffusion coefficient. At steady state the 
above equation is equal to 0, which can be stated in the following form: 
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where Ti and Te are ion and electron temperatures, e is electron charge, K Boltzman's constant, and Ve is electron 
velocity.  Substituting [(e2Ve

2)/K(Ti+Te)] = b, the equation becomes                   
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The power balance may be written separately for each species [25] as following.  
i- For the electrons, the local power balance is given by 
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ii- For the ions, the local power balance is given by   
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The parameters χe and χi are the electron and ion thermal diffusivities, respectively, and P (W.m-3) is the power density of 
the various mechanisms indicated by the subscripts:  

ie ion-electron collision, Ω  ohmic heating, b bremsstrahlung radiation, α  alpha power, R radiation, a auxiliary power, c 
cyclotron radiation, cx  charge exchange, and ei electron-ion collision. 

 
 



 

Figure 1 Block Diagram for Egyptor Tokamak 

 

Figure 2-a. Implemented Simulator Program for Bennett Distribution. 

 
6. Proposed Simulator for Tokamak Device 

 
    A proposed program for modeling and simulation of Tokamak is designed and implemented in VisSim environment, 

where VisSim is a visual block diagram language for nonlinear dynamic simulation. A block API allows users to create 
their own blocks in C/C++. Add-ons allow real-time analog and digital I/O for real-time simulation, embedded system C 
code generation, optimization, neural nets, OPC, frequency domain analysis, scaled fixed point, IIR and FIR filter design. In 
this environment, the system is modeled by the graphical interconnection of function blocks [26]. For flexibility, variables 
are used to denote system parameters and then are assigned values in a separate compound block. Data analysis is also 



included in the program.  The program can be distributed with VisSim viewer or through generated C code from VisSim 
block diagram, which means it does not depend on the VisSim environment.  Differentiation and Integration Blocks are 
adjusted to suit the nature of the Tokamak equations, which have two variables radius (r) and time (t) as described in the 
pervious section. Equation (5) is modeled using VisSim environment at first. Secondly, the diffusion rate is taken into 
account in the model. For comparison purposes, the Bennett distribution of the form  n = n0/(1+n0*b*r2)2 [27], which is 
applied as an approximated solution of the particle balance equation is also modeled for verification purposes of the 
simulator. Figure  (2-a) shows the implemented simulator program for Bennett distribution and figure  (2-b) gives Bennett 
distribution. 

 

Figure  2-b. Bennett Distribution 

7. Simulation Results 
 
     In this section the simulation results of our case study Small Nuclear Fusion Device (Egyptor Tokamak) using ViSim 

is presented. Figure  (3-a) shows the implemented simulator program for power balance equation (ion temperature), and 
figure  (3-b) shows radial ion temperature distribution. 

 

Figure 3-a. Implemented Simulator Program for Ion Temperature. 



 

 

Figure 3-b. Radial Ion Temperature Distribution. 

 
Finally figure  (4-a) the implemented simulator program for particle balance equation is given, and figure  (4-b) shows 

the radial density distribution inside plasma. The height and width of curves are controlled by Tokamak parameters (b and 
internal parameters in figure  (2-a)).  

 

Figure 4-a. Implemented Simulator Program for Particle Balance. 



 

Figure 4-a. Implemented Simulator Program for Particle Balance. 

Comparing with published experimental and analytical results in [28] as shown in figure  (5), we obtain good agreement. 
Moreover, any enhancements can be easily added to the simulator in a block diagram form.   Simulation of the Tokamak 
system can be used in conjunction with control system of Tokamak [22] using the same software. Hence, Model Predictive 
Control (MPC), a method which continuously updates the controller and is able to predict and act during power supply 
saturation can be applied. In this case, we used the real-time mode for hardware-in-the-loop control part of the whole 
system. Simulating in real-time mode has the effect of retarding a simulation so that one simulation second equals one 
second in real time. 

 

Figure 5. The electron density profile in [28]. 

8. Conclusions 
 
     In this paper studied a real time modeling system for dynamic systems has been  focused for the software real time 

modeling techniques and systems. A simulator for Tokamak  Egyptor is designed and implemented. It allows the 
introduction of the techniques of PC interfacing with industrial and scientific systems using easy to manipulate environment 
(e.g. block diagram method) to engineers involved in the nuclear field. The obtained results of comparison with published 



work is good. Using the same environment, Model Predictive Control (MPC) methods can be used. Moreover, any 
enhancement to the model can be added easily due to the nature of block diagram programming. 
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Abstract 
This paper introduces a combined algorithm to particle swarm based optimization and discusses the results of 

experimentally comparing the performances of its three versions with the performance of the   particle swarm optimizer. In 
the combined algorithm, each particle flies and is attracted toward a new position according to its previous best position 
and the point resulted from the combination of the previous global best position and the global best position. The variants of 
the combined algorithm and the   particle swarm optimizer are tested using a set of multimodal functions commonly used as 
benchmark optimization problems in evolutionary computation. Results indicate that the algorithm is highly competitive and 
can be considered as a viable alternative to solve the optimization problems. 
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1. Introduction  

 
The particle swarm algorithm, which is frequently called particle swarm optimizer, is a new evolutionary algorithm, 

where the population is now called a swarm and each individual is called a particle [1]. It is inspired by the behavior of bird 
flocking and fish schooling. A large number of birds or fish flock synchronously, change direction suddenly, and scatter and 
regroup together. Each particle benefits from the experience of its own and that of the other members of the swarm during 
the search for food. 

Particle Swarm Optimization (PSO) algorithm was proposed by Eberhart and Kennedy in 1995 [1], and had been applied 
to evolve weights and structure for artificial neural networks by Shi and Eberhart in 1998 [2], manufacture and milling by 
Tandon in 2000 [3], reactive power and voltage control by Abido M.A. in 2002 [4] and Jiang Chuanwenet in 2005 [5], and  
state estimation for electric power distribution systems by Shigenori et al. in 2003 [6]. The convergence and 
parameterization aspects of the PSO have also been discussed in [7, 8, 9].   

PSO has been successfully used as an alternative to other evolutionary algorithms in the optimization of D-dimensional 
real functions. Particles move in a coordinated way through the D-dimensional search space towards the optimum of the 
function. Their movement is influenced not only by each particle own previous experience, but also by a social compulsion 
to move towards the best position found by its neighbours. To implement these behaviours, each particle is defined by its 
position and velocity in the search space. In each iteration, changes resulting from both influences in the particle’s trajectory 
are made to its velocity. The particle’s position is then updated accordingly to the calculated velocity. The PSO, its main 
variants and the structural model behind it are extensively discussed in [10].  

This paper aims to introduce a combined algorithm of PSO and discuss the results of experimentally comparing the 
performance of its versions with the particle swarm optimizer (PSO)[8]. In the combined algorithm, each particle flies and 
is attracted toward a new position according its own best position and the point resulted from the combination of the the 
point resulted from the combination of the previous global best position and the global best position. 

The rest of the paper is organized as follows: in section 2, the PSO method is described. In section 3, the combined 
algorithm and its versions are exposed. Test functions and test conditions are presented in sections 4 and 5. In section 6, 
optimization test experiments are illustrated. In section 7, the experimental results are reported, and are discussed in section 
8. Finally, conclusion is reported in section 9. 



 
2. Particle Swarm Optimization 

 
The particles evaluate their positions relative to a goal (fitness) at every iteration, and particles in a local neighborhood 

share memories of their “best” positions, then use those memories to adjust their own velocities and positions as shown in 
equations (1) and (2). The PSO formula define each particle as a potential solution to a problem in the D-dimensional space, 
with the ith particle represented as Xi = (xi1, xi2, …, xiD). Each particle also remembers its best position, designated as 

ipX , 

and its velocity Vi = (vi1, vi2, …, viD) [11].  
In each generation (iteration) t, the velocity of each particle is updated, being pulled in the direction of its own best 

position (
ipX ) and the best of all positions (Xg) reached by all particles until the preceding generation. After finding the 

two best values, the particle updates its velocity and positions according to equations  (1) and (2).  

( ) ( ) ( )( ) ( )( )1 1 2 21
ii i p i g iV t aV t b r X X t b r X X t= − + − + −                                                   (1) 

( ) ( ) ( )1i i iX t cX t dV t= − +                                                                                                          (2) 

At iteration t, the velocity ( )1iV t −  is updated based on its current value affected by a momentum factor a and on a term 

which attracts the particle towards previously found best positions: its own previous best position (
ipX ) and globally best 

position in the whole swarm (Xg). The strength of attraction is given by the average of the own and the social attraction 
coefficients b1 and b2 . The particle position ( )iX t  is updated using its current value and the newly computed velocity 

( )tVi , affected by coefficients c and d, respectively and they can be set to unity without loss of generality [8]. Randomness 

useful for good state space exploration is introduced via the vectors of random numbers r1 and r2. They are usually selected 
as uniform random numbers in the range [0, 1]. 

The original PSO formula developed by Kennedy and Eberhart [1] were combined by Shi and Eberhart [2] with the 
introduction of an inertia parameter, ω , that was shown empirically to improve the overall performance of PSO. 

Several interesting variations of the PSO algorithm have recently been proposed by researchers in [12], [13], [14], [15], 
[16], [17]. Many of these PSO improvements are essentially extrinsic to the particle dynamics at the heart of the PSO 
algorithm and can be applied to augment the new algorithm presented in this paper. By contrast to most other PSO 
variations, this paper proposes a significant modification to the dynamics of particles in PSO, moving each particle towards 
a new position according its own best position and the point resulted from the combination between  the previous global 
best position and the global best position instead of the global best position that used in the standard particle swarm. This is 
in addition to the terms in the original PSO update equations. 

 
3. The Combined Algorithm 

 
In the standard   PSO algorithm, in each generation t, the velocity of each particle is updated, being pulled in the 

direction of its own previous best position (
ipX ) and the best of all positions (global position) (Xg) reached by all particles 

until the preceding generation. Whereas in the combined PSO algorithm, in each generation  t, the velocity ( )1iV t −  of 

particle i is updated based on its own best position (
ipX ) and the point (Xc) resulted from the combination of the global best 

position (Xg) and the previous global best position (X2g) as illustrated in equation (3).   Where  R1 and R2 ∈ [0,1] are uniform 
random variables  defined as the combination weights.   

(Xc) = R1 (Xg) +R2 (X2g)                                                                                 (3) 
In other words, after finding a new global best position for the (Xg) its old position will be assigned to (X2g) and the 

particle updates its velocity according to equation (4) and updates its positions according to equation (2). 

( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1 2 21
ii i p i g g iV t aV t b r X X t b r R X R X X t= − + − + + −               (4) 



In order to study the effects of the parameters R1 and R2 in (4) on the performance of the Combined Particle Swarm 
Optimization algorithm (CPSO), three variants were used in the experiments denoted as CPSO1, CPSO2, and CPSO3.  

In the CPSO1 version, the particle updates its velocity according to equation 3 with equal random weight combination 
between the global best position (Xg) and the previous global best position (X2g). i.e. R1 = R2 =R.  

In the CPSO2 version, the particle updates its velocity according to equation 3 with random weight combination between 
the global best position (Xg) and the previous global best position (X2g). i.e. R1 and R2 are two different random variables.  

In the CPSO3 version, the particle updates its velocity according to equation 3 with random linear combination between 
the global best position (Xg) and the previous global best position (X2g). i.e. R2 = (1- R1).  

 
4. Test Functions and Conditions 

 
In order to know how competitive the combined algorithm is and the effects of the combination weights R1 and R2 , we 

decided to compare its three versions against the PSO algorithm that is represented in [8]. Five benchmarking functions 
were selected to investigate the performance of the three versions CPSO algorithm and PSO. The considered test functions 
were used in [6], [7] and [8]. The functions, the number of dimensions (D), the admissible range of the variable (x), and the 
goal values are summarized in Table 1. 

Two parameter sets (Eqs. (1), (2) and (4))  a and b = b1 = b2 were selected to be  used in the test based on the suggestions 
in other literature where these values have been found, empiricaly, to provide good performance [10, 7, 9]. and used in 
testing the PSO by I.C. Trelea [8].  

Parameter set 1 (a = 0.6 and b = 1.7) was selected by the author in the algorithm convergence domain after a large 
number of simulation experiments [7].  

Parameter set 2 (a = 0.729 and b = 1.494) was recommended by Clerc [18] and also tested in [7] giving the best results 
published so far known to the author. All elements of c and   d were set to 1 as used in [8]. 

A more detailed study of convergence characteristics for different values of these parameters exists in [19]. 
 

5. Optimization Test Experiments 
 
In order to test the performance of the three versions of CPSO and PSO algorithms two sets of experiments were used 

with the above mentioned test conditions and the two parameter sets. 
In the first set of experiments, the maximum iteration number was fixed to 2000. Each optimization experiment was run 

20 times with random initial values of x and v in the range [xmin, xmax] indicated in Table 1. Population sizes of N = 15, 30 
and 60 particles were tested. The number of iterations required to reach the goal was recorded.  Average number, median, 
minimum, maximum, and success rate of required iterations, and expected number of function evaluations, for each test 
function are calculated and presented in Tables 2-6. 

 
In the second set of experiments, Each optimization experiment was run 20 times for 1000 iterations with population 

sizes of N = 30 particles. The averages of the best values in each iteration were calculated and plotted in figures 1- 5.    
During the optimization process the particles were allowed to “fly” outside the region defined by [xmin, xmax] and also the 

velocity was not restricted. 
 

6. The Experimental Results 
 
This section compares the various algorithms to determine their relative rankings using both robustness and convergence 

speed as criteria. A “robust” algorithm is one that manages to reach the goal consistently (during all runs) in the performed 
experiments [20]. Tables 2–6 present the following information: Average number, median, minimum, maximum number of 
iterations required to reach a function value below the goal. Also, success rate of required iterations, and expected number 
of function evaluations. The “success rate” column lists the number of runs (out of 20) that managed to attain a function 
value below the goal in less than 2000 iterations, while the “Ex. # of Fn. Evaluation” column presents the expected number 



of function evaluations needed on average to reach the goal, calculated only for the succeeded runs using the following 
formula.  

 
Ex. # of Fn. Evaluation = (Average number of iterations) x (number of particlsin the swarm)/ (success rate) 
 
Table 2 shows that the CPSO1 and CPSO2 algorithms reached the goal during all the runs for solving the Sphere 

function (F0) with both parameter sets.  While CPSO3 and PSO algorithms failed to reached the goal during some runs with 
parameter set 1. 

 

Table 1. Test functions [8] 
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The optimal solution for all functions is equal to 0 
 
Also, as illustrated in figure 1, all the algorithms, except CPSO3 and PSO with the parameter set1 and 15 particles, have 

reached a function value below the goal of the sphere function with both parameter sets.  That means the number of 
particles affects the convergancy of the CPSO3 and PSO algorithms for such problems type. 

None of the algorithms, with the exception of the CPSO3 with both parameter sets and 15 particles and PSO with 
parameter set2 and 15 particles, had any difficulty reaching the goal of the Rosenbrock function (F1) during any of the runs. 
Table 3 shows the expected number of function evaluations for all the algorithms required for solving the Rosenbrock 
function (F1) with the CPSO1 algorithm requiring the fewest function evaluations overall. Also, fig. 2 illustrates that the 
CPSO1 and CPSO2 reached a value below the function goal while CPSO3 and PSO stacked near the function goal. 

Table 4 shows that the CPSO1 and CPSO2 algorithms perform admirably on the Rastrigin function (F2), but the CPSO3 
and PSO algorithms are less robust on the same function. 

Note that the CPSO1 algorithm is doing very well on this problem, delivering the best overall performance for the 
Rastrigin function where it reached the goal on approximately 60 iterations and reached the optimal solution in 
approximately less than 400 iterations as illustrated in fig. 3. 

Concerning the effects of the parameter sets on the algorithms performance on Rastrigin function (F2), there is no 
significant difference between the algorithms performance with both the parameter sets except the performance of CPSO2 
algorithm with parameter set1 is a little mach better than its performance with parameter set2 as shown in figure 3. 

 



Table 2. Average number, median, minimum, maximum, and success rate of required iterations, and 
expected number of function evaluations, for the test function F0 

Number of algorithm iterations to achieve the goal   

Average Median Minimum Maximum 
Success Rate Ex. # of Fn. 

Evaluation Fun. 
# of 
Part. 
N 

Algorithm 

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 
CPSO1 125 168 126 173 69 102 161 216 1 1 1874 2516 
CPSO2 320 471 316 457 249 358 373 613 1 1 4804 7065 
CPSO3 632 720 635 699 461 500 903 1313 0.45 1 21070 10796 

15 

PSO 769 764 722 731 523 586 1377 1275 0.40 1 28838 11460 
CPSO1 131 180 127 179 103 137 161 221 1 1 3917 5396 
CPSO2 300 404 296 396 259 296 352 528 1 1 9006 12126 
CPSO3 311 358 306 360 246 315 499 434 1 1 9323 10739 

30 

PSO 344 395 333 395 266 330 457 572 1 1 10320 11850 
CPSO1 118 157 120 159 90 123 132 185 1 1 7083 9423 
CPSO2 264 346 254 346 221 301 302 389 1 1 15816 20760 
CPSO3 224 281 222 285 197 245 254 310 1 1 13431 16854 

F0 

60 

PSO 252 314 252 313 214 269 309 368 1 1 15120 18840 

 

Figure 1. Average best fitness curves for sphere function (Fo) 

Griewank’s function (F3) proves to be hard to solve for all the algorithms except CPSO1 CPSO2 algorithms, as can be 
seen in Table 5. Only the CPSO1 and CPSO2 algorithms consistently reached the goal during all runs with both parameter 
sets and they are candidate to reach the optimal solution (see fig. 4) while PSO and CPSO3 did not reach the goal during 
some runs (see Table 5).  

The CPSO3 failed almost completely to reach the goal for solving Griewank function (F3) with parameter set1 and 15 
particles, as can be seen in Table 5 while it reached the goal in almost 11 out of 20 runs.  Fig. 4. illustrates the effects of the 
parameter sets on the performance of CPSO3 and PSO algorithms.  Note that both the CPSO3 and PSO algorithms failed 
almost completely to reached the goal with parameter set1 in 1000 runs but they did with parameter set2 in less than 350 
runs, while the CPSO1 and CPSO2 algorithms managed to solve the same function consistently with both the parameter 
sets. That means CPSO3 and PSO algorithms are very fast in algorithming the solution but making a bridging – zigzagging- 
near the optimal solution. 



Table 3. Average number, median, minimum, maximum, and success rate of required iterations, and expected 
number of function evaluations, for the test function F1 

Number of algorithm iterations to achieve the goal   

Average Median Minimum Maximum 
Success Rate Ex. # of Fn. 

Evaluation Fun. 
# of 
Part. 
N 

Algorithm 

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 
CPSO1 88 112 89 105 62 63 119 160 1 1 1318 1673 
CPSO2 288 484 276 463 199 281 516 760 1 1 4324 7260 
CPSO3 587 753 490 666 325 416 1147 1403 0.50 0.80 17601 14118 

15 

PSO 531 1430 523 729 413 452 695 9476 0.50 1 15930 21450 
CPSO1 84 105 81 105 67 74 110 127 1 1 2520 3149 
CPSO2 257 392 258 395 204 253 336 771 1 1 7701 11771 
CPSO3 450 477 401 417 212 249 961 1051 1 1 13500 14315 

30 

PSO 614 900 383 408 239 298 3718 4642 1 1 18420 27000 
CPSO1 77 102 76 101 64 80 89 124 1 1 4623 6138 
CPSO2 227 309 218 298 174 234 468 430 1 1 13590 18561 
CPSO3 263 356 230 280 170 215 531 775 1 0.85 15768 25138 

F1 

60 

PSO 337 611 284 311 189 219 916 4450 1 1 20220 36660 
 
 

  

Figure 2. Average best fitness curves for Rosenbrock function (F1) 

 
 
 
 
 
 
 
 
 
 
 



Table 4.  Average number, median, minimum, maximum, and success rate of required iterations, and 
expected number of function evaluations , for the test  function F2 

Number of algorithm iterations to achieve the goal   

Average Median Minimum Maximum 
Success Rate Ex. # of Fn. 

Evaluation Fun. 
# of 
Part. 
N 

Algorithm 

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 
CPSO1 57 81 51 71 23 47 139 147 1 1 857 1217 
CPSO2 264 548 220 517 157 145 698 1357 0.90 1 4402 8214 
CPSO3 122 169 120 156 80 105 194 309 0.85 1 2145 2671 

15 

PSO 172 299 147 292 102 123 208 299 0.35 0.8 7371 5606 
CPSO1 48 68 44 63 32 37 83 145 1 1 1451 2054 
CPSO2 281 443 233 348 121 159 857 955 0.95 1 8862 13283 
CPSO3 106 155 100 148 66 104 192 212 0.90 1 3522 4641 

30 

PSO 140 182 128 174 104 123 208 299 0.90 0.95 4667 5747 
CPSO1 60 69 55 62 39 34 132 127 1 1 3603 4152 
CPSO2 265 517 209 414 144 215 633 1526 1 1 15906 31026 
CPSO3 91 127 87 120 62 80 136 193 1 1 5457 7614 

F2 

60 

PSO 122 166 116 164 84 119 168 214 0.95 1 7705 9960 
 
 

 

Figure 3. Average best fitness curves for Rastrigin function (F2 ) 

 
Concerning the Schaffer’s function (F6): Table 6 illustrates that only the CPOS1 and CPSO2 algorithms reached the goal 

in all runs with both parameter sets, while CPSO3 and   PSO algorithms had some difficulties in reaching the goal. 
 
 
 
 
 
 
 
 
 
 



 

Table 5. Average number, median, minimum, maximum, and success rate of required iterations, and 
expected number of function evaluations, for the test function F3 

Number of algorithm iterations to achieve the goal   

Average Median Minimum Maximum 
Success Rate Ex. # of Fn. 

Evaluation Fun. 
# of 
Part. 
N 

Algorithm 

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 
CPSO1 132 215 131 205 84 89 191 470 1 1 1982 3218 
CPSO2 364 581 314 522 254 329 731 1403 1 1 5465 8714 
CPSO3 - 508 - 487 0 438 0 702 - 0.55 - 13845 

15 

PSO 689 755 580 608 443 470 1589 1755 0.35 0.6 29529 18875 
CPSO1 131 168 130 165 79 57 229 293 1 1 3929 5046 
CPSO2 342 440 293 431 227 330 720 667 1 0.95 10257 13910 
CPSO3 266 312 265 301 235 270 327 505 0.85 0.90 9386 10387 

30 

PSO 313 365 304 361 257 319 401 455 0.90 0.90 10433 12167 
CPSO1 113 152 109 148 72 115 199 198 1 1 6753 9117 
CPSO2 325 421 268 370 188 301 853 718 1 1 19494 25245 
CPSO3 211 251 208 248 178 216 240 286 1 1 12681 15084 

F3 

60 

PSO 226 287 224 280 202 266 250 238 0.95 1 14274 17220 
 
 

 

Figure 5. Average best fitness curves for Schaffer function F6 

 
Note that, only the MPOS1 and CPSO2 algorithms reached below the goal and the optimal values in less than 350 

iterations on average with both parameter sets while CPSO3 and   PSO algorithms had stacked before the goal with both 
parameter sets in 1000 iterations (see fig. 5).  

 
7. Discussion 

 
Overall, as far as robustness is concerned, the CPSO1 algorithm appears to be the winner, since it achieved a perfect 

score in all the test cases as represented in boldface (see Tables 2-6).  
The CPSO2, algorithm is less robust, followed closely by the CPSO3 and PSO algorithms. The standard PSO algorithm 

was fairly unreliable on this set of problems. 



As a result, the PSO must be executed several times to ensure good results, whereas one run of CPSO1 and the CPSO2 
usually sufficient. 

Note that in the set1 case, there is a little difference between the performance of the algorithms with parameter set1 and 
with parameter set2 of where the algorithms' conversances are faster with parameter set1 than with parameter set2. 

CPSO3 and PSO are more sensitive to parameter changes than the other algorithms. When changing the problem, one 
probably needs to change parameters as well to sustain optimal performance. 

Regarding convergence speed, CPSO1 is always the fastest followed by CPSO2, whereas the CPSO3 or PSO are always 
the slowest. Especially on the all functions, CPSO1 has a very fast convergence (2-5 times faster than PSO). This may be of 
practical relevance for some real-world problems where the evaluation is computationally expensive and the search space is 
relatively simple and of low dimensionality. 

Overall, CPSO1 is clearly the best performing algorithm in this study. It finds the lowest fitness value for most of the 
problems, which emphasized in boldface, see figures 1-5. 

Regarding the parameter sets: in general, the performance of all algorithms are best with parameter set1 than the 
performance with parameter set2, while all of them need less number of iterations to reach the specified goal with set1 than 
with parameter set2. That means parameter set2 slows the algorithms and don’t make a bredging phenomina while 
parameter set1 accelerate the algorithms but somewhile make a bredging phenomina. 

Looking at the number of function evaluations, the CPSO1was in the lead, followed by the CPSO2 algorithm, as shown 
in boldface (see Tables 1-5) 

Considering, the above   mentioned point that CPSO1 had no difficulty in reaching the goal and all its solutions are 
below their corresponding goals more than the other algorithms. So, we can conclude that CPSO1 is more superior to the 
other algorithms. That means we can consider it as a best alternative algorithm for solving optimization problems. 

Table 6. Average number, median, minimum, maximum, and success rate of required iterations, and expected 
number of function evaluations, for the test function F6 

Number of algorithm iterations to achieve the goal   

Average Median Minimum Maximum 
Success Rate Ex. # of Fn. 

Evaluation Fun. 
# of 
Part. 
N 

Algorithm 

Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 Set1 Set2 
CPSO1 198 232 183 201 57 63 473 498 1 1 2971 3476 
CPSO2 231 254 207 225 72 99 522 631 1 1 3461 3813 
CPSO3 286 307 177 273 64 114 704 613 0.40 0.55 10720 8366 

15 

PSO 583 1203 138 126 63 91 3706 5853 0.45 0.4 19433 45113 
CPSO1 122 148 98 134 55 57 307 397 1 1 3668 4434 
CPSO2 144 163 126 163 57 87 439 298 1 1 4322 4893 
CPSO3 348 401 271 234 73 111 1252 1769 0.65 0.60 16047 20025 

30 

PSO 161 350 120 157 74 102 595 1264 0.75 0.60 6440 17500 
CPSO1 93 112 76 110 42 73 206 193 1 1 5559 6708 
CPSO2 112 147 94 128 52 53 232 422 1 1 6726 8841 
CPSO3 402 305 217 146 72 75 1727 1378 0.85 0.95 28385 19257 

F6 

60 

PSO 169 319 91 119 40 83 854 2361 0.90 0.95 11267 20147 
 



 

Figure5. Average best fitness curves for Schaffer function F6 

8. Conclusion  
 
This paper has proposed a new variation of the particle swarm optimization algorithm called a combined PSO, 

introducing a new term into the velocity component update equation: each particle is moved toward a new position 
according its best previous position and the point resulted from the combination of the best previous global position and the 
former best previous global position. The implementation of this idea is simple, based on storing the provious positions. The 
new algorithm outperfoms PSO on many benchmark functions, being less susceptible to premature convergence, and less 
likely to be stuck in local optima.  

In this study, the CPSO1 has shown its worth on tested problems, and it outperformed CPSO2, CPSO3 and PSO on all 
the numerical benchmark problems as well. Among the tested algorithms, the CPSO1 can rightfully be regarded as an 
excellent first choice, when faced with a new optimization problem to solve.  

To conclude, the performance of CPSO1 is outstanding in comparison to the other algorithms tested. It is simple, robust, 
converges fast, and finds the optimum in almost every run. In addition, it has few parameters to set, and the same settings 
can be used for many different problems.  

Future work includes further experimentation with parameters of CPSO, testing the new algorithm on other benchmark 
problems, and evaluating its performance relative to Evolutionary Algorithms. 
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Abstract 
Tracking moving objects is one of the most common requirements for many location-based applications. The location of a 

moving object changes continuously but the database location of the moving object cannot update continuously. Modeling 
of such moving object database should be considered to facilitate study of the performance and design parameters. Such 
study is essential for selecting the optimal solution in order to minimize the implementation of the overhead cost. Location 
updating strategy for such type of database is the most important criteria. This paper proposed a timed Petri net model 
based on one of the most common updating strategies, namely the distance updating strategy. In addition, a method for 
estimating the time needed to update Moving Object Database (MOD) using the concept of the minimum cycle time in timed 
Petri nets is presented. This time is the main criterion, which can be used to study the overhead communication cost for 
MOD. A typical numerical example is given to demonstrate the advantages of proposed modeling technique. 

 
Keywords: Updating moving object database, Deterministic timed Petri net, Deviation update policy and tracking moving 

object database.  
 

1. Introduction 
 
Recent advances in wireless communication systems and Global Position system (GPS) are the main issues that make 

position tracking of moving objects feasible. Tracking is an enabling technology for many location-based services.  As a 
result, a wide interest of many new applications that depend on location management can be shown in the literature [1], [5]. 
Tourist services, mobile E-commerce and digital battlefield are examples of these applications [2]. Other application classes 
that will benefit from tracking include transportation, traffic control, mobile resource management, and mobile workforce. 
This brought to database researchers the new challenge in the area of MOD. 

Traditional database management system (DBMS) is not equipped to handle continuously changing data such as the 
transient position of moving object. This means that traditional DBMS deals with static data attributes at a given time [3], 
leading to a rather discrete model. Therefore, in many MOD applications a continuous model for these dynamic objects will 
be essential in order to mange such moving objects [1], [3], [4]. In this case, an updating strategy for a moving object is 
required. The objective of this strategy is to accurate track the current location of moving object while minimizing the 
number of updates. It is obvious that the more often data is updated, the more accurate the data will be. However, the cost of 
updating data increases with the frequency updating the data. That is, there is a trade-off between updating cost and 
information accuracy in designing MOD systems. The most common approach is distance update policy, which updates the 
database every x units of distance. So it provides a certain error in response to a query about the location of any object (e.g.: 
retrieve the current location of an object?) The answer is within a circle of radius x centered at location L (which is provided 
in the last updating for database). This approach is used in many applications due to its simplicity [6], [9].  

Petri nets are graphical and mathematical modeling tools applicable to many systems. They are promising tools for 
describing and studying information processing systems that are characterized as being concurrent, asynchronous, 
distributed, parallel, nondeterministic and or stochastic as a graphical tool [8]. In this paper, a timed Petri net is presented 



for updating a MOD. The moving object in this model uses a deviation update policy to update its database location. Then, 
the Petri net method of the minimum cycle time is applied to estimate the time duration required to update the MOD [8]. 
The number of moving objects, the number of wireless communication agents, and the number of processors of the DBMS 
affect this time duration.  

The rest of this paper is organized as follows. Moving object database architecture is presented in Section 2. Section 3 
describes Petri net basics that are used in this paper. The model for updating the MOD using Petri net is presented in Section 
4. Section 5 is an illustration example of the model and how the minimum cycle time method can be used to estimate the 
updating time. Section 6 discusses some applications of the model. Finally, conclusions and a proposal for future work are 
drawn in Section 7. 

 
2. Moving object database (MOD) architecture and modeling  

 
As shown in Figure (1) the MOD system modeled in this paper consists of: 1) A number of moving objects each of 

which is equipped with a GPS receiver, a processor for calculating the deviation of moving object based on deviation 
updating policy and a local database. 2) A database server with a number of processors, which controls a database for all 
moving objects, and can be centralized or distributed and 3) wireless agents that provide communication services between 
moving objects and the DBMS. The history of a moving object’s location and time is stored in the database at the database 
server. 

 
 

 
Figure 1. Architecture of the MOD updating system 

When the number of available communication agents is limited and there is, more number of moving objects needs to 
update their location in the central database system. Thus, an overhead results from increasing both the number of update 
message and the number of wireless communication agents. Therefore, this paper proposed Timed Petri net model to 
decrease both the number of update messages and overhead of communication cost   of the moving object database in an 
efficient manner. However, the following section explains some basic aspects of Petri net before we introduced the model.  

 
3. Petri net Basics 

 
A Petri net is a graphical and mathematical modeling tool. It consists of three types of object. These objects are places, 

transitions, and arcs that connect them. In graphical representation, places are drawn as circles, transitions as bars or boxes. 
Arcs are labeled with their weights (positive integers). Where a K-weighted arc can be interpreted as the set K parallel arcs. 
Labels for unity weight are usually omitted. Input arcs connect places with transitions, while output arcs start at a transition 
and end at a place. There are other types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current state of the 
modeled system (the marking) is given by the number (and type if the tokens are distinguishable) of tokens in each place. 



Transitions are active components. They model activities, which can occur (the transition fires), thus changing the state of 
the system (the marking of the Petri net). Transitions are only allowed to fire if they are enabled, which means that all the 
preconditions for the activity must be fulfilled (there are enough tokens available in the input places). When the transition 
fires, it removes tokens from its input places and adds some at all of its output places. The number of tokens removed/added 
depends on the cardinality of each arc [8], [9], [10]. In modeling using the concept of conditions and events, places 
represent conditions, and transition represent events. For instance, input (output) places may represent preconditions (post-
conditions) to an event (transition). Some typical interpretation of transitions and their input places and output places are 
shown in Table (1). A formal definition of a Petri net is given in table (2) [8].  

 

Table 1Table 1. Some typical interpretations and places. 

Output places Transition Input places 
Post-conditions Event Preconditions 

Conclusions Clause in logic Conditions 

Input signals Signal 
processor 

Input signals 

Buffers  processor Buffers  
 

Table 2. The definition of a Petri Net. 

Formally a Petri net  (PN) can be defined as follows 

PN = (P ,T, I , O, M0) Where 
P = { p1, p2, p3, .... ... , pm} is a finite set of places 
T = {t1, t2, t3,........,tn} is a finite set of transitions where p υ T≠ Φ, and P∩T =  Φ 
I : ( P x T ) → N is an input function that defines     the directed arcs from places to transitions, and 

N is a set of nonnegative integer 
O : ( P x T ) →  N is an output function that defines the directed arcs from transitions to places , and  
M0: P→ N is the initial marking. 

 
The classical Petri nets do not include any notion of time; in order to use the Petri net formalism for the quantitative 

analysis of the performance and reliability of system versus time, a class of Timed Petri net has been introduced. The time 
delay variables associated with the Petri net can be either deterministic variables (leading to the class of models called 
deterministic Petri net), or random variables (leading to the class of models called Stochastic Petri net) [8]. When time delay 
is associated with transitions, this type of net is called timed transition, Petri net [10]. Suppose there is a time delay 
associated with transition this means that when this transition is enabled tokens remain on the input places of a transition for 
a time at least equal to the time delay associated with enabled transition before their removal by firing this transition. 

 
4. Model of MOD Updating System Using Timed Petri net 

 
This section presents an application of timed Petri net model. The model of MOD system is shown in Figure (2) and this 

model consists of three phases:  
Phase (1):  Moving objects and GPS receivers. Each moving object is equipped with one GPS receiver (for collecting the 

current real location of the object), one processor (for calculation), and local database (to store the previous location of 
moving object and a threshold which are used to calculate the deviation of the moving object). The functionality of this part 
is that moving objects get the information on location and time, and applies distance update policy to generate an updating 



message, if the deviation exceeds a specific threshold or if the moving object stops moving, which will be sent to the 
database server. 

Phase (2): Communication Services. This part includes several wireless agents, which provide communication services. 
The functionality of this part is to provide the communication between moving objects and the database server. 

Phase (3): Database server. The information of all moving objects is stored in a database and handled by the DBMS, 
which is equipped with a number of processors. The main functionality of this part is to update the database with the 
received messages and generate return messages to update the pervious location of the moving object. The operation of each 
transition, the tokens in each place and the meaning of each arc inscription in this model shown in Figure (2) are given in 
Tables 3, 4 and 5 respectively. 

 

 

Figure 2. Petri net model for updating moving object database system. 

 

Table 3. The operation of each transition. 

Transition Operation 
t1 A moving object gets its current location and time. Signal from satellites. 
t2 All GPS's receiving the signal from satellites. 
t3 The moving object ( mid) stops moving, so sending < mid, cl, ct> to P10. 
t4 Calculating the deviation (did )for each moving object mid. 
t5 Passing all < mid, pl>'s from P6 to P5. 
t6 Comparing did with thid and the result is did > thid. 
t7 Comparing did with thid and the result is did ≤thid. 
t8 Passing all < mid, thid>'s from P9 to P8. 

t9 
A wireless agent sends the message <mid, mcl, mct,> from the moving object 
mid to the database. 

t10 A moving object generates a transaction for updating the database.                               

t11 
A database processor executes the transactions for appending the received 
message <mid, mcl, mct> for the moving object mid. 

t12 
 A wireless agent Updating the location of the previous update for each 
moving object mid  

t15 Moving object gets its previous location and time after updating database 



 

 

Table 4.  The tokens of each place. 

Place Token 
P1 
 

<mid> All moving objects, waiting for current location and time. Initially all n 
moving objects are here. 

P2 <gid, gcl, gct>, GPS receivers after collecting the information from satellites. 
P3 All GPS's, n , waiting for receiving the signal from satellites 
P4 <mid, mcl, mct, >, moving objects with the current location and time waiting for 

calculation or directly sending to the database server. 
P5 <mid, plid>, waiting for sending pl to the moving objects. Initially all locations of 

the previous update for all n moving object are here.  
P6 <mid, plid>, waiting for passing to P5. 
P7 The set <mid, did, cl, ct> moving objects with the current location ,current time and 

deviation  
P8 The thresholds for all moving objects, i.e. the set <mid, thid>, waiting for 

comparison. Initially all threshold values for all n moving object are here. 
P9 The thresholds for all moving objects, i.e. the set <mid, thid>, waiting for passing < 

mid, thid > to P8. 
P10 The set <mid , cl, ct>, waiting for sending to the database server. 
P11 <wid> wireless agents. Initially there is r = the set of all wireless agents, waiting for 

receiving the information on moving objects. 
P12 <mid, mcl, mct>, the messages of moving objects that are waiting for updating the 

database. 
P13 <db, mid>, waiting for receiving the information on moving objects. Initially all n 

moving objects are here. 
P14 <db, mid, mcl, mct>, transactions waiting for appending the information on the 

moving objects to the database db. 
P15 <pid>, processors. Initially there is K = the set of all k processors managing the 

database of n moving objects 
P16 <mid, cl>, waiting for updating the locations of the previous updates. 

 
5. Illustration Example with Calculation of the Minimum Cycle Time 

 
The minimum cycle time defined as the minimum time required to complete a firing sequence returning to the initial 

marking after firing each transition at least once [8]. This measure is used only for the timed net. The net shown in Figure 
(2) can be converted into a timed Petri net shown in Figure (3). A Petri net MATLAB toolbox, available at [12] is used to 
build the proposed model using MATLAB version 6.5. Since, we can move the delays d1, d2, d3, d4, d5 of all the outgoing 
arcs of t4, t6, t7, t9, t11, t12 to their corresponding transitions. We consider these delays are deterministic and the proposed 
model is deterministic timed Petri net model. Firings of transitions t3 and t4 represent the two cases: one (t3) for which the 
moving object stop moving and the other (t4) for which the moving object continue its motion and need to calculate the 
deviation. In addition, firings of transitions t6 and t7 represent the two cases: one (t6) for which the deviation exceeds the 
threshold and the other (t7) for which the deviation dose not exceed the threshold to simplify the analysis, it is assumed that 
these two cases occur with equal probabilities. In addition, the Self-loops (t9-P11, t12-P11 and t11-P15) in Figure (2) are 
transformed into the loops as shown in Figure (3). 



From studying the structural properties of the net in Figure (3) we can say that this net is bounded, conservative, 
repetitive and consistent. Now it is easy to find the following: 

 
Incidence Matrix (A) 

  -   o iA A A=                                                                                                           (1) 
Where Ao = output matrix and Ai = input matrix. The entries of the incidence matrix are defined as follows: aij = aij + - 

aij- where aij+ = w (i, j) is the weight of the arc from transition i to its output place j and aij- = w (i, j) is the weight of the 
arc to transition i from its input place j. When transition ti fires, aij + represents the number of tokens deposited on it is 
output place pj , aij- represents the of tokens removed from is input place pj , aij represents the change in the number of 
tokens in place pj. The following figures show the Petri net MATLAB toolbox to find the incidence matrix of the net 
mentioned above. 

Table 5. The explanation of each arc inscription. 

Arcs Explanation 
a1 <mid>, where mid is the identification number of a moving object. 
a2 <gid, gcl, gct>, where gid is the identification number of a GPS receiver, gcl is 

current location of the moving object which has the same identification number as 
gid, and gct is the time for gcl. 

a3 <mid, mcl, mct, >. A moving object mid has the current location and time (mcl, mct). 
a4 <mid, pl> A set of locations of the previous update for all moving objects where  mid 

= a moving object, pl = the location of the previous update for mid, id = 1, 2, …, n} 
a5 <mid, did, cl, ct> (where  mid = a moving object, did = the Euclidean distance 

between pl and cl, cl = the current location of mid, and ct = the time point when 
midis at cl  i = 1, 2, …, n) 

a5, d1 d1 is the time delay for calculation of the deviation of each moving object.  
a4, d1 d1 is the time delay for calculation of the deviation of each moving object.  
a6 <mid, thid>A set of thresholds for all moving objects, thid=the threshold for mid, id 

= 1, 2, …, n} 
a3 ,d2 d2 is the time delay for Comparing did with thid for each moving object.              
a7 <wid> The id of wireless communication agent wid 
a6 , d2 d2 is the time delay for Comparing did with thid for each moving object.              
a3 ,d3 d3 is the time delay associated with wireless communication for sending an update 

message 
a7,d5 d5 is the time delay for wireless communication for sending Updating of the location 

of the previous update for each moving object mid 
a8 <mid, cl>  the moving objects current locations send to update the previous location 

where  mid = a moving object ,cl = the current location of mid, id = 1, 2, …, n 
a9 <db, mid>, where db is the name of the database handling the information of the 

moving object mid. 
a9,a3 <db, mid, mcl, mct, >, a transaction of the database db for updating the current 

location and time (mcl, mct)  
a8,d4 d4 is the time delay for the service provided by the processor pid in the database 

server that’s the time to execute a transaction of the database db. 
a10 <pid> The id of processor pid in the database server. 
a9,d4 d4 is the time delay for the service provided by the processor pid in the database 

server, that’s the time to execute a transaction of the database db. 



Arcs Explanation 
a8,d5 d5 is the time delay for wireless communication for sending Updating of the location 

of the previous update for each moving object mid 
 

 

Figure 3.  Deterministic timed Petri net model obtained from Figure 2. 

 

Figure 4-a.  Shows the input Matrix of the net shown in Figure 3. 

Two concepts are related to the incidence matrix. They are T-invariant and P-invariant, which are useful to find the 
minimum cycle time [8], [9],[10]. 

An integer solution x of AT x = 0 is called T-invariant. The nonzero the corresponding transitions, which belong to a 
firing sequence transforming a marking M0 back entries in a T-invariant represent the firing counts of to M0. The T-
invariant indicates the firing sequence transforming M0 back to M0 and the number of times these transitions appear in this 
sequence but does not specify the order of transition firing. In the net of Figure (3) there is a firing sequence from a marking 



M back to the same marking M after firing each transition at least once. Such as <<<t2, t1, t4, t5, t7, t8>t2, t1, t3, t13, t9, t10, t11, 
t14, t13, t12, t15>t2, t1, t4, t5, t6, t8, t13, t9, t10, t11, t14, t13, t12, t15>. The firing count vector x of this firing sequence is given by: 

  ( 3  3  1  2  2  1  1  2  2  2  2  2  4  2  2 )  TX =                                                                   (2) 
An integer solution y of Ay= 0 is called a P-invariant. This satisfies the following invariant property: 

0    T T
iy M y M=                                                                                                                     (3) 

Where M0 is the initial marking and Mi is any marking reachable from M0. The none zero entries in a p-invariant 
represent weights associated with the corresponding places so that the weight sum of tokens on these places is constant for 
all markings reachable from an initial marking. There are six (minimum, independent) P- invariants and they are given by: 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
1

T
2

            P  P  P  P  P  P  P P  P  P P  P  P  P P  P  P P

y  = ( 0  1   1   0  0  0  0  0  0  0   0    0   0   0  0   0   0   0 ),

y  = ( 0  0  0  0  0  0  1   1  0   0   0    0   0   0 
T 

3

T
4

T
5

 0  0   0   0 ), 

y  ( 0  0  0  0  0  0  0  0  0  0   1    0    0   0  0  0   1    0 ),

y  = ( 0  0  0  0  0  0  0  0  0  0   0    0    1   1  0  0   0    0 ),

y  = ( 0  0  0  0  0  0  0   0   0  0 

=

T
6

 0   0   0   0   1   0   0  1 ) and

y  = ( 1  0  0  1   1  1   1   0   0  1   0   1   0   1   0   1   0  0 ).

                                       

(4) 

The minimum cycle time can be found by the following equation given in [8]: 
 0   { ( ( ) / } T T T

k i kMinimum Cycle Time Max y A DX y M=                                                    (5) 
where, for the net shown in Figure (3), x is the T-invariant given by Equation (2), yk's are six P-invariants given by 

Equation (4), and Ai = [aij–]n x m, D = the diagonal matrix of di (di is the time delay associated with transition ti , i = 1, 2,…, 
n) and M0 = the initial marking are shown below: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18            p p p p p p p p p p p p p p p p p p
n   0  n  0  n  0  0  n  0   0   r   0   n    0   k   0   0   0 T

0 Μ = ( )
 

Where n is the number of moving objects, GPS receivers, and tables in the local and server database, r is the number of 
wireless communication agents, and k is the number of database server processors. ykT M0 are found as follows: 
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The input matrix Ai is given by the following matrix: 



 
The delay matrix D for the net in Figure (3) is the Diagonal matrix given by: 
 

 
 
Thus  

1 1 2 2 3 4 4 5 3 5( )    ( 0  0  0  2   2  0  2  2  0  2   0  0  0  2  2  2  2 2  0 )  T T
iA DX d d d d d d d d d d= +  

and we find the following for Equation (5): 
 

T T T
1 i 1 0

T T T
2 i 2 0 2

T T T
3 i 3 0 3 5

T T T
4 i 4 0 4

T T T
5 i 5 0 4

T T T
6 i 6 0 1 2 3 4 5

y (A ) DX / y  M  =0

y (A ) DX / y  M  = 4d  /n

y (A ) DX / y  M  = (2d +2d ) /r

y (A ) DX / y  M  = 2d  /n

y (A ) DX / y  M  = 2d / k

y (A ) DX / y  M  = (4d  +2d +2(d +d +d )) /2n

 

From Equation (5) the minimum cycle time of the net in Figure (3) can be given by:  
 

2 3 5 4 4 1 2 3 4 5 min     {0, 4  / ,  2( ) / ,  2  / ,  2 /  ,  (4  2  2( ) /2 }The imum cycle time Max d n d d r d n d k d d d d d n= + + + +                  (6) 

  
6. Application of the proposed Model  

 
D = 

Ai = 



 
The minimum cycle time for the timed net in Figure (3) which is given by Equation (6) corresponds to the minimum time 

needed to check if the update is necessary for both stopped moving object or the moving object with deviation greater than a 
specific threshold and, if so, update once for each of n moving objects [11]. 

For example: consider the net in Figure (3) where we assume that the time delays as follows: d1= 0.0002 time unit, d2 = 
0.0002 time unit, d3= 0.01 time unit, d4 = 1 time unit and d5 = 0.01 time unit. Also assume that n= 100, r=10 and k=1. From 
equation (6) the minimum cycle time = 2d4/k = 2 time unit. 

If the GPS receiver collects the location information (current location of the moving object and current time) every three-
time units, from Equation (6) each object can complete one update through 2 time units, so the system is safe. In other word 
the system is safe if the GPS receiver collects the location information every t time unit since t > minimum cycle time. 

Also according to Equation (6), we can increase 4d2/n, (2d3+2d5)/r, 2d4/n and (4d1 + 2d2 + 2(d3 + d4 + d5))/2n up to 2d4/k 
without affecting the minimum cycle time. For example we can increase (2d3 + 2d5) /r to 2d4/k by decreasing the number of 
wireless agents’ r =10 to 1 without affecting the performance of he system. The system with one agent allows each moving 
object to make its update to the database. This can reduce the cost paid for wireless communication services. Assuming that 
the wireless communication cost depends only on the time of communication, from Equation (6), we can also increase the 
number of moving objects without affecting the minimum cycle time. From this, we can deduce that a large number of 
moving objects can maintain their current locations in the database without needing to increase the number of wireless 
agents.  

Suppose that the GPS receiver collects the location information more frequently, e.g., every 1 time unit, then the above 
minimum cycle time (2 time units) for each object may be too slow. That is, not all GPS signals can be recorded and the 
location information of some moving objects may be lost. In this case, it is necessary to decrease 2d4/k; by either decreasing 
d4 or increasing k. Upgrading or improving the DBMS software so as to speed up transactions in the DBMS can reduce the 
delay d4. Adding more DBMS processors can increase the value of k and reduce the minimum cycle time. For the DBMS 
with more than one processor, the database can be processed in parallel, reducing the time needed for update. 

 
7. Conclusions and Future Work  

 
This paper presents a timed Petri net model for updating moving object database system using distance-updating 

strategy. In addition, a method for calculation of the minimum cycle time for updating the database is proposed. A Petri net 
MATLAB toolbox used to study the structural properties of the proposed model. The presented model can be more complex 
by refining the presented model. For example, transitions t9 and t12 can be refined in order to model wireless communication 
protocols. Transitions t10 and t11 also can be expanded to simulate a specific DBMS architecture. Another updating strategy 
such as a deviation updating strategy can be used instead of distance updating policy. 
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Abstract 

This paper presents an intelligent decision support system (IDSSFPE) for faculty performance evaluation. The 
requirements of the faculty decision makers are identified through the analysis and the design of the IDSSFPE. Three 
models based of the IDSSFPE are illustrated. Such models are: i) The performance measurement model based on data 
envelopment analysis (DEA), ii) Number of applicants estimation model, and iii) Applicants classification model based on 
artificial neural network (ANN). 
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1. Introduction 
 
Over last decade, new technologies like artificial neural networks (ANN) have seen a rapid acceptance for solving a wide 

range of business problems. Many papers have been reviewed ANN from various points of view. Simth and Gupta [28] 
review ANN applications and techniques for the operations researcher. Bel Raggad used ANN as a technology for 
knowledge resources management [3] and Bijayananda using it in the field of education to predict MBA students’ success 
[4]. 

Also, Data envelopment analysis (DEA) is a methodology that has been used to evaluate the efficiency of entities. DEA 
used in various fields based on [14] such as, Jill Johnes measure teaching efficiency in higher education to graduates from 
UK universities [20]. J.Colin et al using computed DEA based efficiency scores for policy evaluations and possible funding 
guidance in UK higher education [18]. Jill Johnes explores the advantages and drawbacks of various methods for measuring 
efficiency in higher education context [19]. B.Casu and E.Thannssaulis evaluate cost efficiency in UK university control 
administration [2]. Colbert used DEA to determine the relative efficiency of 24 top ranked US MBA programs [7]. 

White in [31] points out that the trend of decision support system (DSS) will come into increased use in universities, as 
their administrators management scientists combine their managerial skills with quantitative techniques for organizing and 
presenting information.  Elsa et al in [12] discusses a balanced scorecard approach for strategy and quality driven 
universities. Roger and Saud [27] develop a DSS to enable systematic exploration of educational database.  

In literature the usage of DEA in a DSS is not a large scale. Such as, W.K. Wang describes knowledge–base DSS for 
measuring the performance of government real state investment using DEA models [33]. Marta et al used it as a tool for 
integrating heterogeneous data model applies fuzzy logic to decision support systems [21].  

Some applications combined DEA and ANN models, such as, Parag and James in [25] used this combination to improve 
forecasting accuracy of neural networks under monotonicity assumption. Desheng, Zijiang and liang in [10] integrate DEA 
and ANN to examine the relative branch efficiency of a big Canadian bank. Parag in [26] used DEA to illustrate that non-
linear variable return to scale (VRS) with empirical data and compare the performance of non-linear ANN with linear 
regression model. 



 

This paper, combine the DSS, ANN and DEA for building an Intelligent Decision Support System for Faculty 
Performance Evaluation (IDSSFPE) and applying such system on El-Menoufia University. Such IDSSFPE integrates 
number of applicants admitted, evaluation performance for a faculty, and classify applicants to each department in a faculty. 
The number of applicants admitted to a faculty and to each department is estimated using ANN while Evaluation 
performance for a faculty is analyzed by applying DEA. The remaining parts of this paper are arranged as  

follows: Section 2 contains problem description. Section 3 the architecture  of IDSSFPE is discussed. In section 4  
discuses a case study applied IDSSFPE.  Section 5 contains the analysis of results.   Finally the conclusion is summarized 

in section 6. 
 

2. Problem Description 
  

Based on the way to ensure quality for higher education in Egypt, the IDSSFPE was build to help top management to 
take decisions concerning to the needs for measuring the performance of faculties, determine number of applicants admitted 
to any faculty, and applicants admitted to each department in a faculty.  

Menoufia University is one of the higher education institutions in Egypt. Therefore, it is considered to the natural outlet 
for secondary school graduates seeking for university education form its location and other locations in Egypt. They wants 
to join the university based on his/her grades or as a best location university. Therefore, the IDSSFPE was used in order to 
evaluate the performance of faculties in Menoufia University. 
3. The IDSSFPE Architecture 
  

The Architecture of IDSSFPE developed for the use of faculty decision-making as outlined in Fig 1 which consists of the 
following parts: 

• User Interface, 
• Database, and 
• Model -Base Module. 

The main components and functions of each part will be illustrated in the following sections. 
3.1. The User Interface The user interface of IDSSFPE for a faculty performance evaluation is a menu driven 
and user-friendly interface. It allows the DM to interact with other modules of the IDSSFPE. It has a capability 
to enter/open database implemented by FPE program. It permits a DEA and EMS software to be run as 
independent software. The UI includes a set of links to the IDSSFPE modules and accesses the DB and 
facilitates accessing to run the DEA modules, creating the classification and forecasting databases in addition to 
trains ANN to specify number of applicants admitted to a faculty and specify which applicants enter each 
department in a faculty. 
 
3.2. The Database   The database module divided into two parts. External database that can be generated out of 
program FPE to use in Frontier Analyst Software to measure performance, while internal database makes by 
program FPE and used for forecasting or classification in a faculty. 
 
3.3. Model-Base Modules  The model-base module incorporates multiple functionalities or tools into a loosely 
couple single package in such a way that they can be used independently. The major issues during the 
development of the IDSSFPE  were the selection of model types and computing technology. The models 
developed to be included in the IDSSFPE are:  

 
i. Forecasting Model 

ii. Classification Model 
iii. Performance assessment Model 

The main components and the role of each model in the IDSSFPE will be illustrated in the following section. 
 



 

 

Figure 1. The Main Components Of The IDSSFPE 

i. Forecasting Model 
Forecasting models naturally highlight variable that have significant variation over the forecasting periods and can be 

forecasted well. In higher education two methodologies are used in enrollment forecasting. The first is econometric model 
and the second is trend model. Econometric forecasting Models used for identifying the determinants of enrollment rates 
rather than forecasting the enrollment Trend Models while the methodology of trend model is straightforward [9]. These 
models can be based on predicting the path of the college enrollment rate or total enrollment. The models can be statistical 
trend fitting models or can be based on "expert" judgment as to future rate of change the forecast performance of the various 
trend models should be analyzed [1].  

In recent years ANN is identified as model for forecasting. Many studies have shown that neural networks can be one of 
the very useful tools in forecasting. Neural networks have flexible nonlinear function mapping capability that can 
approximate any continuous function with arbitrarily desired accuracy [8,17].  ANN are also nonparametric data-driven 
models that impose little prior assumptions on the underlying processes from which data are generated. As such, ANN are 
less susceptible to the model misspecification problem than most parametric nonlinear methods [15]. Neural networks are 
trainable analytic tool that attempt to mimic information processing patterns in the brain [16]. Because of ANN do not 
necessarily require assumptions about population distribution, economists, mathematicians and statisticians are increasingly 
using it for data analysis [15]. ANN not only doesn’t require assumption about underlying population but also it is a 
powerful forecasting tool that draws on the most recent development in artificial intelligence research. With the advent of 
modern computer technology and information science sophisticated information systems can built that make decisions or 
predictions based on information contained in available past data. Such systems are called learning systems and are 
currently used for the purpose of classification or predictions [32]. Tsoukalas and Uhrig [29] define a neural network as a 
data processing system consisting of a large number of simple highly interconnected processing elements (artificial neurons) 
in architecture by the structure of cerebral cortex of the brain. Approximately 95% of the reported neural network business 
applications used the multiplayer feed forward neural networks (MFNN) with the back propagation-learning rule [34]. This 
type of neural network is popular [28] because its abroad applicability to many problem domains of relevance to business: 
principally predictions, classification, and modeling. MFNN is appropriate for solving problems that involve learning the 
relationships between a set of inputs and known outputs. Based on the above-mentioned models’ review used in forecasting, 



 

the MFNN is selected in this paper to sole number of applicants’ estimation. MFNN is a collection of interconnected 
homogenous processing unit, called neuron. A neuron activity is controlled by a continuous and differentiable mathematical 
function that aggregates input signals received from other neurons and produce output signals transmitted to other neurons. 
The flow of information is from left to right, with the input layer receives input data describing the decision domain passed 
through the network via the hidden layer of neurons. The number of nodes constituting the hidden layer depends on the 
complexity of pattern in input data. Then to the output layer, which is prepares the response representing the situation 
outcome. Fig 3 shows the general architecture of a MFNN used in the IDSSFPE. The output for algorithm of ANN known 
because the decision maker don't determine number of applicants admitted to faculty based on faculty needs only but this 
number specified from the high council of universities. Therefore, a neural network with back propagation learning rule 
approach is used for this situation. Based in input variable in decision domain a recommended number of applicants 
admitted to faculty would be obtained. 

Many steps are followed in building a forecasting model using neural network as state in [30]. The development process 
for ANN application includes nine steps  as shown in Fig.3. In the next sections some of these steps of flow diagram 
examined in more detail: 

 

 

Figure 2. Flow diagram of the development process of an ANN 

Collect Data  

The data used in the IDSSFPE are collected from Menoufia University of the academic year 2002/2003. The data 
considered to be the inputs of the forecasting model are: the number of professors which is considered as an approximation 
of resources available for faculty teaching, the faculty supported from scientific search unity which is considered as sound 
indicator for the performance of a faculty and its research, and the cost of social solidarity which is considered as an 
approximation for expenses on applicant as aid. 

While the output of that model are the number of enrollment applicants in a faculty which considered to be as an 
indicator for quality of student on admission. 

 

Collect data 

Separate data into training and test 
sets 

Define a network structure (that in 
our case is feed forward )  

Select a learning algorithm (that here 
back propagation)  

Set parameters values ( η,α ) , 
initialize weights w ij  

Transfer data to network inputs 

Start training and determine and 
revise weights 

Stop and test 

Implementation: use the network with 
new cases  



 

 

 
 

Network Structure 
One of the most critical decisions is the network architecture. That means the number of layers, the number of nodes in 

each layer, and how nodes are connected. In our situation a multiplayer feed forward neural network (MFFN) is chosen and 
then input nodes,  output nodes, number of hidden layer, number of hidden nodes are determined. In network used by 
program chosen to be with three layer, input layer contains nodes based on the attributes of data set that user enter, number 
of hidden nodes increase by one of input node, and finally the output layer contains one node that represents the forecasted 
number of applicants to faculty.   

 
Transfer data to network  

The decisions made in this phase of development are critical to the performance of a network. The goal of data 
preparation is to reduce nonlinearity when its character is known and let the network resolve the hidden nonlinearities that 
not are understood. 

Scaling data 
While loading data from the database file, minimum value and maximum value for each column are determined. The 

values of inputs between minimum and maximum (called range ∆ ) must be scaled into the range 0.1 to 0.9 for the neural 
network input.  

The equation for scale input is [29]: 
 

max(0.8 / ) [0.9 - (0.8 / )]y x x= ∆ + ∆  

Where: 
y  is the value of data scaled, 

∆  is the range between maximum and minimum value ( minmax xx −=∆ ), and 

x  is the value of input will be transfer or scale. 
Scaling variable between 0.1 and 0.9 is often used to limit the amount of sigmoid activation function used in the 

representation of variables in order to avoid "network paralysis”. When the network is run, the output produced must be 
scaled. 
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Network training 
Training the ANN is an iterative process that starts from random set of weights and gradually enhances the fitness of the 

network model and the known data set. The iteration continues until the error sum is converged to low acceptable level. In 
the back propagation algorithm, two parameter learning rate and moment adjusted to control the speed of reaching the 
minimum ratio of the different between calculated value and value of training cases. Taking these steps, the following 
parameters have been used for the MFNN design: 

 
Threshold        0.1or less 
Learning rate (η )  0.6 
Moment  ( α )   0.9 
Error, (E) 0.01 

 

Uses * 0.6 0.25
1- 1- 0.9

η
η

α
= = =  for as better learning rate and iterations 100000. 

ii. Classification Model 
 
The data collected from faculty of computers & information to be considered as the inputs of classification model are the 

grades of students in the following courses: Logic design (LD), Data Structure (DS), Operations Research (OR), Computer 
Software (CS). The output of the model is the applicants’ classification to department that represents the admission policy to 
each department. The MFNN with back propagation learning rule is used to build this model for classifying applicants to 
each department in a faculty. The same nine steps used in forecasting model are followed in building the classification 
model. 

 
iii. Performance assessment model: 

  
Model for performance assessment was selected on the basis of the required output, which means measure the efficiency 

of a faculty based on its inputs and outputs.  
Data Envelopment Analysis (DEA) initiated by Charnes, Cooper and Rhodes [5] is a linear programming–based 

technique for measuring the performance of administrative units. The performance of a unit is evaluated by comparing its 
performance with the best performing units of the sample. The measure of performance is expressed in the form of 
efficiency score. DEA is a non-parametric linear programming technique for measuring the relative efficiency of decision-
making units (DMUs) that perform the same type of functions and have the identical goals and objectives. The notion of 
efficiency employed in the DEA approach is termed Pareto Efficiency, which is an extension of the social  choice criterion 
of Pareto Optimality [23]. An advantage of DEA is that there is no preconceived functional form imposed on the data in 
determining the efficient units. That is, DEA estimates the production function of efficient DMUs using piecewise linear 
programming on the sample data instead of making restrictive assumptions about the underlying production technology. As 
an efficient frontier technique, DEA identifies the inefficiency in a particular DMU by comparing it to  similar DMUs 
regarded as efficient. The efficiency of each DMU is measured relative to all other DMUs under the restriction that all 
DMUs lay on or below the efficient frontier. The DMUs indicated as efficient are only efficient in relation to others in the 
sample. The principal disadvantage of DEA is that it assumes data to be free of measurement error. While the need for 
reliable data is the same for all statistical analysis, DEA is particularly sensitive to unreliable data because the units deemed 
efficient determine the efficient frontier and, thus, the efficiency scores of those units under this frontier [24]. DEA appears 
as the most appropriate methodology for higher education evaluations. 

DEA maximize the ratio of a weighted sum of outputs to a weighted sum of inputs where the attached weights to inputs 
and outputs are treated as variables that are to be optimized. The estimation procedure of the relative efficiency score for 
each DMU can be described as follows. Firstly, the best practice production function is generated by a set of DMU that 



 

receive the maximum output amounts for a given level of inputs compared with the other DMUs, called relatively efficient. 
Secondly, for each department DEA produces an efficiency score by comparing the other non-efficient DMUs with the 
production frontier. These DMUs not lying on the frontier are called inefficient. Whereas the efficiency score for the 
frontier generating DMUs equals one, the distance to the efficiency frontier determines the level of inefficiency. Assume 
there is n DMUs that are denoted by index j. Each DMU uses m inputs to produce p outputs. DMU j uses the amount xij of 
input i to produce the amount ykj of output k. The assigned weight to output k is uk and the weight assigned to input i is vi. 
Productivity is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. Thus, the relative 
efficiency of a DMU can be written as (2). 
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By determining the weights of the inputs and outputs endogenously, DEA permits a DMU to adopt a set of weights that 

will maximize its productivity ratio without exceeding 1 for other DMUs. Introducing this constraint converts the 
productivity ratio into a measure of relative efficiency as in (3). 

The constraints mean that the ratio of virtual output to virtual input of the other DMUs does not exceed 1 for every 
DMU. Assuming that the DMUo is evaluated, the objective is to obtain weights u and v in such a way that the ratio of 
DMUo is maximized. Furthermore the non-negative constraint must hold for the weights. 
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The mathematical formulation of DEA is represented in (4) [22]. 
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where: 
Eo  is the efficiency of unit o. 
yjn  is the observed quantity of output j produced by unit n = 1,2,…….,N 
xin  is the observed quantity of input i produced by unit n = 1,2,…….,N  
uj   is the weight (to be determined) given to output j by base unit o  
vi    is the weight (to be determined) given to input i by base unit o 

Remark: A fully rigorous development would replace  , 0j iu v ≥  with i
m m

i i
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where ε  is a non-

Archimedean elemant smaller than any positive real number.   
The linear program solution technique will attempt to make efficiency of the unit as large as possible. The search 

procedure will terminate when some of the efficiencies hit 1. 
The data considered to be the inputs of performance assessment model are collected from the university performance 

report. These data are :- 

Inputs: 

• Enrollment student: Number of applicants enrolled in a faculty for 1st year   
• Students/teacher ratio: is the ratio between enrolled applicants and their teachers, is a sound indicator of level 

resources and effective level supervision in teaching programs.  

• Master Registrations: Number of postgraduate applicant enrolled in Master degree in year n. 

• PhD Registration: Number of postgraduate applicants enrolled in PhD degree in year n.  

Outputs: 

• Graduation number: Number of undergraduate applicant graduate in year n. 

• Master graduates: Number of postgraduate applicant obtains the Master degree in year n. 

• PhD graduates: Number of postgraduate applicant obtain the PhD degree in year n 

• Number of conferences: Number of conferences proceeded by faculty in national & international domain. 

 

 



 

4. Case Study 
 
In this paper, the IDSSFPE with DEA and ANN technique applied to a case study in Menoufia University to assessment 

performance of 11 faculties in university, forecast enrollment applicant to them, and classify applicants to departments in 
faculty of computers & information. 

Forecasting Model 
 
In the case study the neural network using this model are Consist of three layers; which are input layer, one hidden layer 

and output layer (total three layers) was used.  

• The input layer has three inputs which are Faculty Supported from scientific search unity (FSSSU), 
Social Solidarity (SS), and number of Professors (#of Prof) in the faculty. 

• The output layer has only one neuron and one output, namely forecasting (number of applicant 
admitted). 

The neural network model was built using FPE software developed by c#. The model was trained 
with 11 data points represented. 

Classification Model 
 
Faculty of computers & information used as a sample of faculties to classify student to each department. Neural network 

for this model with three layers was used, input layer has four inputs, which are grades of students in the following courses: 
logic design (LD), Data Structure (DS), Operations Research (OR), and Computer Science (CS).  The output layer has only 
one neuron and one output, namely classification. 

 

Performance assessment Model  
 
In the IDSSFPE, DEA is conducted for measure performance of a faculty in Menoufia University. For faculty 

performance, the analysis is performing using the inputs and outputs mentioned in 3.3 (iii). 
Selecting analysis options in DEA 
 
The analysis options available in DEA are: Input minimization (also known as input orientation or contraction) instructs 

DEA to reduce the inputs as much as possible without dropping the output levels. Alternatively, when management's focus 
is on raising productivity without increasing the resource base, output maximization (also known as output orientation or 
expansion) could be specified. under output maximization, outputs are raised without increasing the inputs. It is worth 
noting that when none of the inputs is controllable by management (not the case in this study), one can only specify the 
output maximization model. The current study contributes to the DEA modeling investigations of MU faculties by 
computing an efficiency measures by making allowance for input measurement minimization and output maximization for 
radial adjustments. This model computed also assumes a convex technology. Another analysis option in DEA is a choice 
between constant returns to scale (CRS) and variable returns to scale (VRS). when computing the technical efficiency (TE) 
measures. Clearly the CRS assumption is only appropriate when all faculties are operating at an optimal scale. If this is not 
the case, the TE measures will be confounded by scale efficiencies. Consequently, in the latter case, the VRS assumption 
should be employed so as to compute TE measures that are devoid of these scale efficiency effects [6]. The VRS model will 
always envelop the data more closely than the CRS model, irrespective of whether variable returns to scale exist [11]. The 
appropriate returns to scale assumption is employed with respect to the data utilized in the current study, is a CRS 
assumption. 

Sample to Faculty of Engineering (Sheben): 
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The mathematical model: 
 

 
  

 
 

 
 

 
Transformation to LP for faculty of Engineering based on equation (4): 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
There are mathematical formulations for each faculty of 11 faculties in Menoufia University, which are (agriculture, 

engineering, education, science, commerce, medicine, law, arts, home affairs, tourism & hotels, computers & information) 
 
 

5. Analysis of Results  
 

5.1. Result of Forecasting Model:  As mentioned before that the MFNN model used to solve the forecasting model, 
which used for predict the number of applicant admitted to a faculty. The result is shown in Fig 4. The column called output 
is a recommendation for the decision maker, assist him to make decisions based on this recommendations.  



 

 

Figure  4 Result of Forecasting Model 
This recommendation may be different if the decision maker change of the setting of  network such as number of 

iteration or learning rule or the both. The difference in recommendation based also on the change of decision domain 
meaning, the input variable to neural network. 

In our case of faculties of Menoufia University the result with error 0.02 at learning rate 0.3 and 400 iterations. Then the 
DM uses these recommendations as an input for performance assessment model to notice the effect of number of applicants 
admitted to his  faculty  performance.  

 
5.2. Result of Classification Model: The classification model used to classify applicant to each department in a faculty. 
The results show in Fig 5. The output columan is a recommendation for preferred department for this applicant. the decision 
maker make decisions based this recommendation. This recommendation may be different if the decision maker changes the 
setting of network such as number of iterations or learning rate or both. 

The difference in recommendation based also on the change of decision domain meaning, the change in input variables 
to neural network. 

 
Figure 5 Result of Classification Model in Faculty of Computers & Information 

In our case faculty of computers & information the classification ability of MFNN model was 93.75 at learning rate 0.25 
and 500 iterations. 

 
5.3. Result of Performance assessment Model: The performance assessment model that use a DEA based input and 
output variables specify up performance indicators of quality assurance in higher education [13]. 

Program IDSSFPE uses software Frontier Analyst to solve performance assessment model. Each software can be used 
independently, the software results are the following.  



 

Table 1 Exhibit the performance score of each faculty based inputs and outputs mention in section 3.3 (iii). The two 
options classified the Faculty of Agriculture, Faculty of Engineering (Shbeen), Faculty of Science, Faculty of Medicine, 
Faculty of Arts, Faculty of Tourism & Hotels, and Faculty of Computers & Information as an efficient faculties where each 
faculty has 100% performance , while Faculty of Education, Faculty of Commerce, Faculty of Law, and Faculty of Home 
Affairs are classified as inefficient faculties where each faculty has less than 100% performance. 

In order to improve the performance of inefficient faculties, some inputs may decrease and some output may increase. 
Table 2 exhibits the Potential Improvement of two options used concerning each inefficient faculty. The variable with sign 
(-) is an input variable that may be decrease with this percent to the target level, while variables with sign (+) is an output 
variables that may be increase with this percent from the target level.  

The efficiency results suggest that the Menoufia faculties are operating at a fairly high level of efficiency relative to each 
other, although there is a chance for improvement in several faculties. The way to improve each faculty are illustrative in 
Table 2.based on these result of performance assesment model the decision maker can change of decision domain of 
applicants' classification that effect on graduation number and also in faculty performance. 

Table 1. Faculty Performance 

Faculties CCR Input-Min CCR Output-Max 

Faculty of Agriculture 100% 100% 

Faculty of Engineering(shpeen) 100% 100% 

Faculty of Education 88.39% 88.39% 

Faculty of Science 100% 100% 

Faculty of Commerce 43.42% 43.42% 

Faculty of Medicine 100% 100% 

Faculty of Law 64.19% 64.19% 

Faculty of Arts 100% 100% 

Faculty of Home Affairs 95.48% 95.48% 

Faculty of  Tourism & Hotels 100% 100% 

Faculty of Computers & 
Information 100% 100% 

 
 

6. Conclusion  
 
This paper has outlined the features of an IDSSFPE technique to evaluate performance of a faculty based on DEA and 

ANN techniques.  The DEA is used as an efficiency tool to measure performance of a faculty while the ANN is used as an 
evaluation tool to forecast number of applicants admitted to the faculty and also, to classify applicants into departments of 
the faculty. Such IDSSFPE can be considered as a valuable tool to support and improve the decision making in a faculty. 

 
 
 
 
 
 



 

Table 2. The Potential Improvement of each Faculty 

Faculty of Commerce Faculty of Law Faculty of Education Home Affairs  
Variable 

CCR Min-
Input 

CCR Max-
Output 

CCR 
Min-
Input 

CCR 
Max-

Output 

CCR Min-
Input 

CCR Max-
Output 

CCR 
Min-
Input 

CCR 
Max-

Output 
-Enrollment 

Student -74.32% -40.87% -50.88% -23.48% -66.67% -62.29% -4.52% 0.0% 

-Student / 
Teacher  -56.58% 0.0% -80.17% -69.11% -11.61% 0.0% -56.5% -54.44% 

-Master 
Registration -56.58% 0.0% -35.81% 0.0% -11.61% 0.0% -4.52% 0.0% 

-PhD 
Registration -56.58% 0.0 % -35.81% 0.0% -11.61% 0.0% -4.52% 0.0% 

+Graduation 
Number  324.21% 876.91% 15.34% 79.67% 164.27% 198.97% 0.0% 4.73% 

+Master 
Graduates  754.41% 1867.63% 0% 55.87% 0.0% 13.13% 0.0% 4.73% 

+PhD 
Graduates 0.0% 130.29% 22.51% 60.85% 34.34% 51.97% -4.52% 95.99% 

+ # of 
Conferences 0.0% 130.29% 27.55% 98.7% 80.51% 104.21% 87.14% 79.37% 
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Abstract 
This paper shows how developments in the area of neural network combined with genetic algorithms can be used in the 

handwritten digit recognition. In this work, two approaches to the design of a feed-forward neural network that model the 
handwritten recognition system are discussed. The first approach focuses on constructing the network by using a trail-and-
error method the second approach is responsible for determining the appreciate parameters of the neural network and its 
learning algorithm by the mean of genetic algorithms. Results show that using genetic algorithm for selecting the near 
optimal parameters of the neural network, is improving classification performance on handwritten digits. 
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1. Introduction 
This work deals with neural network application in the field of pattern recognition and more specifically in handwritten 

recognition system. The application of NN in modeling non-linear systems, has a central drawback; the leak of a precise 
method to choose the appreciate topology, type of activation function, and parameters of learning algorithm. These tasks are 
usually based on a trail-and-error procedure performed by the developer of the model. In this approach, optimality or even 
near-optimality is not guaranteed, because the explored search space of the NN parameters is just a small portion of the 
whole search space and the type of search is rather random. To overcome this drawback, an automated method, based on the 
evolutionary properties of genetic algorithms (GAs), is developed. The role of GAs is to evolve several network 
architectures with different parameters so that the best possible combination is finally chosen.   

Handwritten character recognition has been one of the most challenging tasks for artificial neural networks (ANN) 
designers. A number of researchers have recently applied neural network techniques to recognize the hand-written 
characters by using a genetic algorithm (GAs) approach. In [1] GA is used for optimally design the network architecture 
including number of hidden layers, number of neurons in each layer, connectivity and activation functions. And in [2] 
Except for the network architecture, the types of activation functions of the hidden and output nodes, as well as the type of 
the minimization approach of the back-propagation algorithm, are also included in the GA encoding.  Also In [3] a genetic 
algorithm is used to obtain the optimal activation functions that vary according to some intermediate signals of the neural 
network. In [4], evolutionary programming was used for training neural networks, and in [5] a genetic algorithm was used 
for weight selection. Also In [6], changes in a neural network structure during training and operation were implemented by 
removing inactive synapses and inactive units. In [7] it is presented the evolution of neural networks for topology selection 
and weights through mutation although not directed to digit recognition.  

In this paper improvements on the handwritten digit recognition accuracy are gained by a genetic selection of the 
parameters of the back-propagation learning algorithm (learning rate and momentum for all layers) in addition to connection 
weights.  

The paper is organized as follow: next section presents the neural network architecture and its learning in with back-
propagation algorithm. Section 3 introduces the Genetic Algorithms; Section 4 describes The Hybrid intelligent system used 



 

for training the handwritten recognition system. Section 5 describes the dataset used for the handwritten digit recognition 
system. Section 6 presents a comparison to the two approaches and finally section 7 concludes the research study. 

 
2. Neural Network 

Consider a multi-layer feed-forward neural network with as shown in figure 1 with the following notation: 

ky : output of kth  neuron of hidden layer 

jz : output of jth  neuron of hidden layer 
ix : output of ith  input to the neural network. 
kjw : weight between kth  neuron and jth  hidden neuron. 
jiw : weight between jth  neuron and ith  input. 

knet : output of linear combiner in kth  neuron. 
kf , kf ′: activation function and its derivative of kth  neuron 

jnet : output of linear combiner in jth  hidden neuron.. 
jf , jf ′ : activation function and its derivative of jth  hidden neuron 
kd : desired output of kth  neuron. 

 
Each layer has units with sigmoid activation function that compute its output according to the following formula: 

nete
netf −+

=
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1)( …….….……………….….……………….….……………...……….. (1) 

where, net  is the weighted sum of the unit inputs plus a bias or offset term θ . 
  

 
Figure 1:Multi-Layer feed forward Neural Network 

The output of each neuron in hidden and output layer can be calculated as follow: 

∑ += jijij xwnet θ  …………….….……………….….…………………………………... (2) 

)( jjj netfz = …………….….……………….….…………………………………............ (3) 

∑ += kjkjk xwnet θ  ………………….….……………….….…………………………..... (4) 

)( kkk netfy = ………………….….……………….….……………………………............ (5) 
Once the network has been structured for a specific application, it is ready to be trained. Training a network means 

adapting its connection weights so that the network exhibits the desired computational behavior for all input patterns. Back-
propagation known also as Error Back-Propagation or Generalized Delta Rule is the most widely used supervised training 
algorithm for neural networks. Connection weights of the neural network can be adapted by BP algorithm as follow: 

Let the energy function chosen to be minimized is 
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Update of output-layer weights 
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where, γ  is the learning rate, which accelerates the learning procedure. Large values of γ  can cause oscillation, to avoid 
oscillation at large γ , momentum term α  is added to make the change in weights dependent on the past weight change. 

The problem with ANN trained by back-propagation algorithm is that a number of parameters have to be set before any 
training can begin. 
3. Genetic Algorithms 

A GA is a mathematical search technique based on the principles of natural selection and genetic recombination [1]. The 
basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that 
follow the principles first laid down by Charles Darwin of survival of the fittest. A GA allows a population composed of 
many individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., minimizes the cost 
function). Some of the basic terminologies used in the field of genetic algorithms are:  
• Genotype represents a potential solution to a problem, and is basically the string of values chosen by the user, also 

called chromosome. 

• Phenotype is the meaning of a particular chromosome, defined externally by the user. 

• Chromosome is a data structure that holds a "string" of task parameters, or genes. This string may be encoded as a 
binary bit-string or as an array of integers (floating point or real-coded representation). 

• Gene is a subsection of a chromosome that usually encodes the value of a single parameter. 

• The fitness of an individual is a value that reflects its performance (i.e. how well solves a certain task) 

• Recombination or crossover produces new individuals in combining the information contained in the parents.  

• Mutation occasionally injects a random alteration for one of the genes. 

The process involved in GA optimization problems can be summarized as follows see figure 2: 
1. Randomly generate an initial population of potential solutions. 

2. Evaluate the suitability or ‘fitness’ of each solution. 

3. Select two solutions biased in favor of fitness. 

4. Crossover the solutions at a random point on the string to produce two new solutions. 

5. Mutate the new solutions based on a mutation probability.  

6. Goto 2. 



 

 
Figure 2: Flowchart for Genetic Algorithm 

4. The Hybrid Intelligent System 
In this work a standard genetic algorithm is used [9, 15, 16, and 17]. The (learning rate and momentum for hidden and 

output layers) in addition to connection weights are the variable parameters of GA chromosome. The six steps followed by 
the genetic algorithm are as follows: 

1- The initial population:  This population includes 10 chromosomes that are obtained by randomly assigning 
parameters to each member. 

2- Encoding: The real chromosomes of genomes representing the parameters  
3- Training and testing. Each network of the population is trained by back-propagation for 500 iterations with training 

patterns.  
4- The fitness. The fitness value for a given network is the Mean Square Error as in equation (6). The fitness value of the 

population is the average fitness value over all the members of the population. 
5- The evolution stage. Three operators are applied over the population: selection, crossover and mutation operators. 

The operators are applied to the chromosomes of the input population, to produce the evolved new population. 
6- The stopping criterion is satisfied when either the maximum number of generations is achieved 
 

5. Training and Simulation 
 

5.1. Data Description 
Training and testing was carried out using the "Optical Recognition of Handwriting Digits" database, which is made 

available by E. Alpaydin, and C. Kaynak. The database can be downloaded at [18]. It consists of 3823 training pattern of 
Arabic digits. Patterns are 32x32 bitmap images see figure 3 for the digit 2, which are converted to a 4x4 block size to 
reduce the dimensionality of the inputs to the neural network to 8x8 bitmap images.  

Figure (2) shows an example of converting 32x32 bitmap to 8x8 block bitmap. The conversion is achieved by taking the 
32x32 binary images as inputs and groups neighboring pixels in blocks. 

 The sum of "ON" pixels in each block is used to create a pixel in resulting image. The resulting image is then converted 
to a vector of input values and fed to the neural network as a single input pattern. 

Output patterns are divided to ten classes from 0 to 9 as shown in Figure (3).  The testing sets, different from all training 
sets, are composed of 1797 patterns. 

 



 

 
Figure 3: 32x32 bitmap of digit 2 

 

 
Figure 4: 32x32 to 8x8 image conversion using 4x4 block size. 

 
5.2. The Model 

Neural network used has 64 inputs, one hidden layer containing 15 neuron and output layer of 10 neurons. In addition to, 
two pairs of learning rate and momentum for each layer. All parameters of the network including weights were randomly 
initialized. 

 
6. Experimental Results 

 
In order to quantify the recognition capability of neural network configured with genetic algorithm, the analysis was 

performed in two stages as follow :  
 

6.1. Trail-and-Error Training  In training each problem using BP, learning rates and momentums of each layer could 
have been manipulated to find the best network configuration. The different combinations of the learning rates and 
momentums are used to try to find the right combination that will allow the solution to escape local minima but not skip 
over the global solution. The epoch is defined as one complete pass through the data set. For the handwritten number 
recognition system, the learning rate was set at 1.0 and the momentum factor set to 1.0. for each layer Both of these 
parameters were reduced with a reduction factor of 0.1 for every 500 epochs. This procedure was repeated twice with 
different initial weights. The total number of obtained network was 2x10x10=200 networks. This was done in order to keep 
the solution from oscillating and therefore helping to converge upon a solution. The best network of all 200 networks was 
then chosen and tested. 

 
6.2. Training with Genetic Algorithm  The model that described in section 5 was fed into the GA process. The basic 
parameters of GA that must be explored are the population size, the probability of crossover cp , the probability of mutation 



 

mp  and the number of generations. To determine the best possible values of these parameters, a number of experiments 
were carried out.  The type of crossover used was the most common one, the one-point crossover [21]. The best values of  

cp and  mp obtained are 0.9 and 0.01. the runs of the GA process were made with a population size of 10 networks trained 
with BP for 500 epoch for 20 generation ( i.e. 200 network). The best network was then tested. 

 
6.3.   Results The performances of the two approaches discussed later were compared using two measures the MSE and 
the percentage of correction.  
For the Trail-and-Error approach, figure 5 illustrates that the final MSE has a large variation over all networks. This means 
that the optimal is not guaranteed. 

 
Figure 5: Best MSE over 200 run using Trail-and-Error 

By selecting the best network obtained from this approach, and applying the training data as a test set, the achieved MSE 
is varying from 0.0013 to 0.0076 with average MSE 0.0043 as shown in figure 6. And the percentage of correction is 
varying from 96.3% to 100% with average value of 98.69%. the confusion matrix of the desired output versus the actual 
output is shown in figure 7 

 

 

Figure 6: MSE and Percentage correction of training data trained with BP 

 
 

 
Figure 7: Confusion Matrix of training data trained with BP 



 

 
For the test set, the achieved MSE is varying from 0. 0.0040 to 0.0344 with average MSE 0.016 as shown in figure 8. 

And the percentage of correction is varying from 77% to 98.3% with average value of 91.78%. the confusion matrix of the 
desired output versus the actual output is shown in figure 9 

 

 
Figure 8: MSE and Percentage correction of testing data trained with BP 

 

 
Figure 9: Confusion Matrix of testing  data trained with BP 

 
For the GAs approach, as can be seen, figure 10shows the best MSEs found after each generation.  The best solution 

was found after 15 generation. In figure 11, the corresponding average MSEs of the entire population after each generation 
are shown. One can see that the average performance of the population generally improves with the comparison of figure 5.   
    

 
Figure 10:Best Fitness (MSE) versus Generation 

 



 

The best network obtained from this approach, For the test set, the achieved MSE is varying from 0.0012 to 0.0055 with 
average MSE 0.0035 as shown in figure 12.  And the percentage of correction is varying from 98.42% to 100% with 
average value of 99.5%. the confusion matrix of the desired output versus the actual output is shown in figure 13 

 
Figure 11:Average Fitness (MSE) versus Generation 

 
For the test set, the achieved MSE is varying from 0.0031 to 0.0207 with average MSE 0.0104 as shown in figure 14. 

And the percentage of correction is varying from 89.01% to 98.87% with average value of 95.91%. The confusion matrix of 
the desired output versus the actual output is shown in figure 15 
 

 

Figure 12: MSE and Percentage correction of training data trained with GBP 

 
Figure 13: Confusion Matrix of training data trained with GBP 

 

 

Figure 14: MSE and Percentage correction of testing data trained with GBP 



 

 

 

Figure 15: Confusion Matrix of testing  data trained with GBP 

7. Conclusions  
The experimental results show that genetic algorithms have a strong potential to find good solutions for the neural 

network configuration problem, and therefore is a good alternative to select the most appropriate network for a given task. 
For the handwritten digit recognition problem, the average recognition accuracy of 95.2 % was found by the Trail-and-Error 
approach. The neural network was improved by selecting configuration parameters of the neural network using GA to 
97.7%.  
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