Course	specifications				
Programme (s) on which the course is given		B.Sc. of	f		
Mathematics, Pure Mathema	tics				
and		C	Computer		
Science, Mathematics and St	atistic				
Major or minor element of j	orogrammes	Major			
Department offering the pro	gramme	Mathematics			
Department offering the cou	irse	Mathematics			
Academic year / Level		first le	evel		
Date of specification approv	al	Septe	mber 2012		
A- Basic Information		_			
Title: Algebra	Code:M 113				
Credit Hours: 2.5 hrs	Lecture: 2 hrs				
Tutorial: 1 hr.	Practical: 0	hr.	Total: 2.5		
hrs					
Teaching Staff: Dr. Laila	Nashed				
B- Professional Information					
1 – Overall aims of course	1 – Overall aims of course				
Algebra is a subject taught in grade and high school which					
includes the :					
- One of the most important tools in modern					
mathematics in the theory of sets.					
- Solution of polynomials and basic properties of					
functions and graphs.	functions and graphs.				
2 – Intended learning outcomes of course (ILOs)					
a- Knowledge and understanding:					
a1-Demonstrate a knowledge and understanding of					
fundamental physical laws and principles in					
particular in the areas of alg	ebra.				
a2- Have the kno	wledge about	the m	athematical		
terminologies used in this course	2.				
a3- Develop the knowled	ge about the met	hods of	solutions of		
polynomial.					
a4- Appreciate the ide	as of mathemat	ical mo	deling in a		
number of application	areas.				

b- Intellectual skills

students should be able to:

b1- Set a program of exercises according to the type of the course.

b2- Classify the topics of the course into groups according to their applications.

b3- Use algebra to describe the physical world and show an understanding of mathematical modeling of physical phenomena, use appropriate mathematical tools in physics problems

c- Professional and practical skills

c1- set a program of exercise based on the tools he learned in the course.

c2- Weight the out comes of the course through its use in practical application in different scientific fields.

c3- Communicate the results of mathematical ideas, in formal presentations, both oral and written.

d- General and transferable skills

d1- Set a program of exercise based on the tools be learned in the course.

d2- Weight the outcomes of the course through its use in practical application in different scientific fields.

d3- Organize their own learning and use appropriate learning resources, work both independently and a part of a team.

Topics	No. of hours	Lecture	Tutorial/Practical
Introductions of Mathematical logic: Statement, connectives and existential quantifiers. Introduction to set theory: Specification of a set. Some	9	3	3

3- Contents

principle sets, Intervals power set of a set union and intersection of sets. Symmetric difference of two sets. Cartesian product of sets.			
Relation on sets, Binary relation. composite relation			
order relation, Equivlance relation, Equivalence classes	9	3	3
Number Theory:			
Peanos postulates. Addition, multiplication, mathematical induction. Integers. Division	9	3	3
Anomenant and Comparison			
representation of Equation Theory:	14	5	4
Roots of an equation –			
Relation between roots and			
coefficients. Some standard			
reductions of cubic Cardans			
solution of cubic. Descartes			
Solution of Diquadratic.			
Descartes resolvent.			

4– Teaching and learning methods

4.1-Lectures.

4.2-Working on hand in assignments.

4.3-Attainting Practical classes .

5- Student assessment methods

5.1 Mid term written exam to a understanding competencies

to assess

5.2 Oral Exam		to assess
attendance and intere	est.	
5.3 Semester har	nd in assignments	to assess understanding
professionalism.		
5.4 Final term w	ritten Exam	to assess
comprehension.		
Assessment sched	ule	
Assessment 1	Mid term	Week 7
Assessment 2	semester activitie	es Week 5 and 8
Assessment 3	Final term oral e	xam Week 13
Assessment 4	final term writter	n exam Week 14
Weighting of asse	ssments	
Mid-Term Exa	mination 2	0%
Final-term Exa	mination	60%
Oral Examinat	tion.	00%
Practical Exam	ination	00%
Semester Work	X	20 %
Other types of a	assessment 0	0%
Total	1	00%
Total	1	00%

Any formative only assessments

6- List of references

6.1- Course notes collected and prepared notes that cover the main topic in the course content.

6.2- Essential books (text books)

1) R. S. Aggarwal and N. A. S. College: A text Book on set theory and Number System. Meerut S. Chand and Co. LDT Ram Nagar, New Delhi.

2) Shanti Narayan: Elements of Elementary Algebraic Structures S. Chand and Co. Delhi

3) Ravinder Kumar and Sirikrishan Wasan: Atext Book of Algebra , Pitambar Publishing Company , New Delhi.

- 6.3- Recommended books None
- 6.4- Periodicals, Web sites, ... etc None
- 7- Facilities required for teaching and learning None

Course coordinator: Prof. Mohamed A. Ramadan Head of Department:

Date: / /