

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Nondestructive Tests

PRE 601

Production Engineering and Mechanical Design

2013

COURSE IDENTIFICATION AND INFORMATION:

No	Item	Specification	
•			
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week	Lab: - hrs/week
3	Program(s) in which the course is offered.	Production Engineering	g and Mechanical
	(If general elective available in many	Design	
	programs indicate this rather than list		
	programs.)		
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Dr. Adel AbdelazizMo	stafa
		Dr. Badr Mohamed Ba	dr Abdelbary
8	External Evaluator(s)	Prof. Dr.	

B- <u>PROFESSIONAL INFORMATION:</u>

B.1. Description as in Post Graduate Studies Bulletin:

Different methods to detect industrial process defects as ultrasonic, penetrant, magneticparticles, eddy current, Radiographic Testing, Acoustic Emissions, Laser Testing Methods and Vibration Analysis Method also detect defects in products produced by different manufacturing processes.

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to understand the basic principles of various NDT methods, fundamentals, discontinuities in different product forms, importance of NDT, applications, limitations of NDT methods and techniques and codes, standards, specifications related to non-destructive testing technology and practical skills in using different tests appropriately in field of finding industrial defects.

B.3. Relationship between the course and the programme

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Comoral Shills
	Understanding	Skills	Skills	General Skills
Programme Academic	A1 A6 A13	B2 B6		
Standards that the course	A20	B2, B0, B16	C5,C16	D1, D2
contribute in achieving	1120	D 10		

Field	Programme ILOs that the course contribute in achieving	Course ILOs	
	A-1) Concepts and theories of mathematics and sciences, appropriate to the discipline.	a-1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	
Knowledge & Understanding	A-6) Quality assurance systems, codes of practice and standards, health and safety requirements and environmental issues.	a-6-1) Define the quality basics for nondestructive test methods. a-6-2) Identify the application field of each method.	
	A-13) Concepts, principles and theories relevant to Mechanical Engineering and manufacture	a-13-1) Relate the suitable NDT with the manufacture method	
	A-20) Management and business techniques and practices appropriate to engineering industry.	a-20-1) Discuss different nondestructive tests to diagnose the health of structural and engineering components.	
	B-2) Select appropriate solutions for engineering problems based on analytical thinking.	b-2-1) Create solutions to manufacturing problems through the applications of nondestructive tests	
Intellectual skills	B-6) Investigate the failure of components, systems, and processes.	b-6-1) Formulate the causes of failureand suggest the method to avoid failure.	
		b-6-2)Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	
Professional skills	C-5) Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design experiments, collect,	c-5-1) Employ a suitable techniques to choose a suitable test to check the soundness of any structural or engineering component.	

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	analyze and interpret results.	
	C-16) Analyze experimental results	c-16-1)Inspect the component with different
	and determine their accuracy and	nondestructive tests to reach conclusions and
	validity.	compare the results with others.
	D-1) Collaborate effectively within	d-1-1)Judge the experimental test by
	multidisciplinary team.	working team.
		Improve information technology tools
General skills		related to nondestructive tests
	D-2)Refer to relevant literatures.	d-9-1)Revise different resources to obtain
		knowledge and information about
		nondestructive testtechniques.

Week	Contents	ILOs covered by this topic
No.		
1	NDT General Knowledge	a-1-1, a-6-1, b-2-1, b-6-1, c-5-1
2	Manufacturing processes	a-1-1, a-6-1, b-2-1, b-6-1, c-5-1
3	Types Discontinuities associated with	a-1-1, a-6-1, b-2-1, b-6-1, c-5-1
	manufacturing processes	
4	Basics of Visual Testing - Principles, Techniques,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Applications, Limitations, Codes, standards and	2, c-5-1, d-1-1,d-2-1
	Specificationsrelated to Visual Testing	
5	Basics of Liquid Penetrant Testing: Principles,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Techniques, Applications, Limitations, Codes,	2, c-5-1, d-1-1,d-2-1
	standards and Specifications related to Liquid	
-	Penetrant testing	
6	Basics of Magnetic Particle Testing: Principles,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Techniques, Applications, Limitations, Codes,	2, c-5-1, d-1-1,d-2-1
	standards and Specifications related to Magnetic	
	Particle testing	
7	Basics of Ultrasonic Testing: Principles,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Techniques, Applications, Limitations, Codes,	2, c-5-1, d-1-1,d-2-1
	standards and Specifications related to Ultrasonic	
	Testing	
8	Basics of Radiographic Testing: Principles,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Techniques, Applications, Limitations, Codes,	2, c-5-1, d-1-1,d-2-1
	standards and Specifications related to	
0	Kadlography	
9	Laser Testing Methods (Laser Theory, Laser Safety, Main Advantages and Disadvantages	a-1-1, a-0-1, a-0-2, D-2-1, D-0-1, D-0-
10	Logar Classification Training	2, 0-3-1, 0-1-1,
10	Laser Classification – Training	a-1-1, a-0-1, a-0-2, D-2-1, D-0-1, D-0-
11	Vibration Analysis Mathed Dringinlas ("Discourse	2, 0-3-1, 0-1-1,
11	vibration Analysis Method- Principles/ Ineory,	a-1-1, a-0-1, a-0-2, D-2-1, D-0-1, D-0-
10	Sources of vibration, Noise Analysis.	2, 0-3-1, 0-1-1, 0-2-1
12	vibration Analysis Method- Vibration	a-1-1, a-0-1, a-0-2, b-2-1, b-6-1, b-6-

Week No.	Contents	ILOs covered by this topic
	Analysis/Troubleshooting, Predictive	2, c-5-1, d-1-1
	Maintenance.	
13	Vibration Analysis Method- Correction Methods,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Machine Diagnosis, Sensors,	2, c-5-1, d-1-1,d-2-1
14	Rolling Element Bearing Failures, Blowers, fans	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	and gears	2, c-5-1, d-1-1,d-2-1
15	Vibration Analysis Method -Laser Methods,	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-
	Theory of Operation, Applications	2, c-5-1, d-1-1,d-2-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course ILOs	To Assess (ARSPE-PRE)
	Methods	Item No.	Outcomes No.
1	Assignments and Exercises	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-2, c-5-1, d-1- 1.d-2-1	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-2, c-5-1, d-1-1,d-2-1

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSPE-PRE) Outcomes No.
1	Written exam	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-2, c-5-1, d-1- 1,d-2-1	a-1-1, a-6-1, a-6-2, b-2-1, b-6-1, b-6-2, c-5-1, d-1-1,d-2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

1- PAUL E. MIX., "INTRODUCTION TONONDESTRUCTIVETESTING - A Training Guide",Copyright © 2005 by John Wiley & Sons, Inc..

Periodicals, Web sites, Course notes, etc:

1- Nondestructive Evaluation and Quality Control was published in 1989 as Volume 17 of the 9th Edition *Metals Handbook*. With the second printing (1992), the series title was changed to *ASM Handbook*. The Volume was prepared under the direction of the ASM Handbook Committee.
2- J. of NDT.

B. 9. *Facilities Required for Teaching and Learning:*

- lecture room with LCD or show

Course coordinator Dr. Adel Abdelaziz Mostafa Dr. Badr Mohamed Badr Abdelbary

Head of Dept.

Prof. Dr.Taha Ali El-Taweel

Date: <u>12 May 2013</u>

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Non-Conventional Forming PRE 602 Production Engineering and Mechanical Design 2/11/2013

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification	
1	Credit hours	3 cr-hrs	
2	Exam. Hours	3 hrs	
3	Contact Hours	Lecture: 3 hrs/week	Lab: - 0 hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Prof. Dr. Al-Badrawy Abo El-Nasr	
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION:</u>

B.1. Description as in Post Graduate Studies Bulletin:

Introduction - High energy rate forming processes - explosive forming - Electro hydraulic forming - Electromagnetic forming - Super plastic - Forming - Forging with whish rates (Pneumatic and hydraulic).

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of understanding and analyzing the non-conventional forming techniques. The course will also provide the student with required skills for evaluating the non-conventional forming methods in addition to the skills of identifying the limitations and appropriate conditions for using non-conventional forming techniques.

1. **B.3. Relationship between the course and the program**

	Nationa	l Academic Refer	ence Standard	(NARS)
Field	Knowledge &	Intellectual	Professional	Conorol Skille
	Understanding	Skills	Skills	General Skills
Programme Academic Standards				
that the course contribute in	A1, A3, A5	B1, B2, B4, B5	C2, C3, C4	D2
achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	A-1) Understand theory, basics and practices of mathematics, sciences and various the production engineering problems.	a-1-1) Use analytical methods to solve non-conventional forming techniques.
Knowledge& Understanding	A-3) Know the scientific developments in the production engineering problems.	a-3-1) Prove the ability to use analytical methods to the non- conventional forming techniques.
	A-5) Know quality basics for working in the production engineering problems.	a-5-1) Prove the ability to examine the quality issues in the non- conventional forming techniques.
	B-1) Analyze and evaluate the data and use them to solve the production engineering problems.	b-1-1) Able to evaluate validity of the non-conventional forming techniques.
Intellectual skills	B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Able to use analytical methods of identifying the working parameters in the non-conventional forming techniques.
	B-4) Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b-4-1) Able to write report for the most suitable non-conventional forming techniques for specific product.
	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Able to quantify predicted results, and assess specific non- conventional forming techniques.
	C-2) Write and evaluate technical reports.	c-2-1 Able to write and present technical reports for non-conventional forming techniques.
Professional skills	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Able to assess limitations of the non-conventional forming techniques.
	C-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.

Field	Programme ILOs that the course contribute in achieving	Course ILOs
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific non- conventional forming techniques.

Week No.	Contents	ILOs covered by this topic
1	Introduction to non-conventional	a-1-1, c-4-1, d-2-1, d-4-1.
	forming techniques	
2	High energy rate forming processes	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
3		5-1, c-4-1
4	Explosive forming	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
5		5-1, c-3-1, c-4-1
6	Electro hydraulic forming	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
7		5-1, c-2-1, c-3-1, c-4-1
8	Electromagnetic forming	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
9		5-1, c-2-1, c-3-1, c-4-1
10	Superplastic - forming	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
11		5-1, c-2-1, c-3-1, c-4-1
12	Forging with whish rates (Pneumatic	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
13	and hydraulic).	5-1, c-2-1, c-3-1, c-4-1
14	Review	a-1-1, a-3-1, a-5-1, b-1-1, b-2-1, b-4-1, b-
15		5-1, c-3-1, c-4-1, d-2-1, d-4-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course ILOs	To Assess (ARSEP) Outcomes
	Methods	Item No.	No.
1	Assignments and Exercises	a-1, a-3, a-5, b-1, b-2, b-4, b-5, c-2, c-3, c-4	a-1, a-3, a-5, b-1, b-2, b-4, b-5, c-2, c-3, c-4

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written Exams	a-1, a-3, a-5, b-1, b-2, b-4, b-5, c-2, c-3, c-4	a-1, a-3, a-5, b-1, b-2, b-4, b-5, c- 2, c-3, c-4

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. <u>List of References</u>: <u>Essential books (text books):</u>

- 1. Gary F. Benedict, Nontraditional Manufacturing Processes. Marcel Dekker, New York, NY, CRC Press1987.
- 2. Other books Recommended by Instructor
- 13.3- Recommended books

1- Edwards, L. and Endean, M., Manufacturing with materials, 1990, Butterworth Heinemann, ISBN 0-7506-2754-9.

Periodicals, Web sites, Course notes, etc:

- 1. Journal of Materials Processing Technology.
- 2. Journal of Materials Processing Technology
- 3. Manufacturing Technology
- 4. www.gobookee.org

B. 9. Facilities Required for Teaching and Learning:

1. A lecture room with LCD or data show

Course coordinator

Prof. Al-Badrawy Abo El-Nasr

Head of Dept.

Prof. Taha El-Taweel

Date -- 2 November 2013

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Failure Analysis PRE 603 Production Engineering and Mechanical Design 2/11/2013

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specific	cation
1	Credit hours	3 <u>cr-</u> ł	nrs
2	Exam. Hours	<u>3 h</u>	rs
3	Contact Hours	Lecture: 3 hrs/week	Lab: - 0 hrs/week
3	Program (s) in which the course is	Production Engineerin	g and Mechanical
	offered.	Design	
	(If general elective available in many programs indicate this rather than list programs.)		
4	Level at which this course is offered.	M. 8	Sc.
5	Pre-requisites course.	Nor	ne
6	Pre-requisites by Topic	Nor	ne
7	Coordinator	Prof. Dr. Mahmoud Al	oo-Elkhier
8	External Evaluator(s)	Prof.	

B- <u>**PROFESSIONAL INFORMATION:**</u>

B.1. Description as in Post Graduate Studies Bulletin:

Introduction - Materials and fracture types - Significance of failure analysis - Causes of failure and steps for failure analysis - Failure fracture - Corrosion failure - Failure due to wrong choice of materials - Failure due to defective manufacturing

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

, B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing the failure of mechanical components. As well as, this course provide the student with required skills of detecting the critical sections in mechanical components. This course will also provide students with the required skills of identifying types of failure of mechanical components.

B.3. Relationship between the course and the programe

	Nation	al Academic F	Reference Standard	I(NARS)
Field	Knowledge &	Intellectual	Professional	Conorol Skills
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A3	B2, B5	C3,C4	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge &	A- 1 Understand theory, basics and practices of mathematics, sciences and various production engineering technologies	a-1-1) Use quantitative methods to solve production engineering problems.
Understanding	A-3 Know the scientific developments in the production engineering	a-2-1) Prove the ability to use failure techniques to analyze mechanical components.
Intellectual skills	B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Able to use quantitative methods of identifying the failure mode of mechanical components.
	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Able to quantify predicted results, and assess impacts using failure models
	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Able to assess limitations of the available numerical methods.
Professional skills	C-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific production engineering discipline.
	D-4) Use different resources to obtain knowledge and information	d-4-1) Use different resources to obtain knowledge and information

|--|

Week	Contents	ILOs covered by this topic
No.		
1	Engineering properties of materials	a-1-1, a-3-1, b-2-1, c-3-1,c-4-1, d-2-1
2	Materials characterizations	a-1-1, b-2-1, b-5-1, c-3-1, d-2-1
3	Engineering allovs	a-3-1, b-2-1, b-5-1, c-3-1, c-4-1
C		d-2-1.
4	Metallurgical aspects	a-1-1, a-2-1, b-2-1, c-3-1,c-4-1,
		d-2-1.
5	Plastic stress and strain analysis	a-1-1, a-2-1, b-2-1, c-3-1,c-4-1,
		d-2-1,
6	Plastic stress and strain analysis	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1,
		d-2-1.
7	Fatigue analysis procedures	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1,
		d-2-1.
8	Fatigue analysis procedures	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1,
		d-2-1.
9	Macroscopic failure and failure analysis	a-1-1, b-2-1, b-5-1, c-3-1,c-6-1,
		d-2-1.
10	Methods of destructive and nondestructive tests	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1,
-		d-2-1.
11	Methods of destructive and nondestructive tests	a-1-1, a-2-1, b-3-1,c-6-1, d-2-1.
12	Failure analysis procedures	a-1-1, a-2-1, b-2-1, c-3-1, c-6-1,
		d-2-1, d-4-
13	Failure analysis procedures	a-1-1, a-2-1, b-5-1, c-3-1, c-6-1,
		d-2-1
14	Case study	a-1-1, a-2-1, b-2-1, b-5-1, c-3-
		1,c-6-1 d-4-1
15	Case study	a-1-1, a-2-1, b-2-1, b-3-1, c-3-
		1,c-6-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a-1, a-3, b-2, b-5,, c-3, c-4, d-2, d-4	a-1, a-3, b-2, b-5,, c-3, c-4, d-2, d- 4

B.7. <u>Assessments:</u> <u>Student assessment methods</u>:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-2, b-2, b-5,, c-3, c-4	a-1, a-3, b-2, b-5,, c-3, c-4

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

" Practical Engineering Fracture Analysis ", H.M. Tawancy, A Al-Hamid and N. M. Abbas, Marcel Dekker, NW, 2004.

13.3- Recommended books

1- "Failure Analysis: case studies", D.R.H. Jones (ed), Pergamon Press., 2001 *Periodicals, Web sites, Course notes, etc:*

- 1. Int. J of Failure Analysis.
- 2. www.asminternational.org
- 3. www.gobookee.org

B. 9. *Facilities Required for Teaching and Learning:*

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or data show

Course coordinator

Prof. Mahmoud Abo-Elkhier

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Elasticity and plasticity PRE 604 Production Engineering and Mechanical Design 21/3/2012

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specifica	ation
1	Credit hours	3 <u>cr-hr</u>	<u>s</u>
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week	Lab: - hrs/week
3	Program (s) in which the course is	Production Engineering	g and Mechanical
	offered.	Design	
	(If general elective available in many programs indicate this rather than list programs.)		
4	Level at which this course is offered.	M. Sc	•
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Prof. Dr. Mahmoud Ab	o-Elkhier
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Introduction to theory of elasticity, Applications on extrusion torsion by direct integral, Stress and strain functions, Strain rate equation for stress, Strain yielding criteria, Plastic stress-strain relationships, Slip lines, Upper as lower bounding theories, numerical methods.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing the elasticity problems in engineering applications. As well as, this course provide the student with required skills of analyzing many applications of plastic deformation. This course will also provide students with the required skills of identifying, formulating and solving fundamental engineering problems using numerical methods.

.B.3. Relationship between the course and the programe

	Nation	al Academic F	Reference Standard	(NARS)
Field	Knowledge &	Intellectual	Professional	Conorol Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A6	B2, B5	C3,C4	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge &	A-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1-1) Recognize quantitative methods to solve production engineering problems.
Understanding	A-6) Understand principles and ethics of the scientific research.	a-6-1) Identify elasticity and plasticity bases to analyze production engineering applications.
Intellectual skills	B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Able to plan quantitative methods of analyzing production problems
Skiits	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Able to quantify predicted results, and assess impacts using mathematical methods and models
	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Able to assess limitations of the available numerical methods.
Professional skills	C-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific production engineering discipline.

Week	Contents	ILOs covered by this topic
No.		
1	Analysis of stress and strain	a-1-1, a-6-1, b-2-1, c-3-1,c-4-1,
		d-2-1.
2	Elastic Stress –strain relations	a-1-1, a-6-1, b-2-1, b-5-1, c-3-1,
		d-2-1
3	Stress and strain function	a-6-1, b-2-1, b-5-1, c-3-1, c-4-1,
		d-2-1.
4	Solution of elasticity problems in Cartesian coordinates	a-1-1, a-6-1, b-2-1, c-3-1,c-4-1,
		d-2-1.
5	Solution of elasticity problems in polar coordinates	a-1-1, a-6-1, b-2-1, c-3-1,c-4-1,
		d-2-1,
6	Strain rate equation of stress	a-1-1, a-6-1, b-2-1, b-5-1, c-4-1,
		d-2-1.
7	Theory of Plasticity	a-1-1, a-6-1, b-2-1, b-5-1, c-4-1,
		d-2-1.
8	Plastic stress-strain relations	a-1-1, a-6-1, b-2-1, b-5-1, c-4-1,
		d-2-1.
9	Application on extrusion	a-1-1, b-2-1, b-5-1, c-3-1,c-4-1,
10	Electionalectic enclosis	d-2-1.
10	Elastic-plastic analysis	a - 1 - 1, a - 0 - 1, 0 - 2 - 1, 0 - 3 - 1, c - 3 - 1, d - 2 - 1
11	Unner and lawer hounding theories	(1-2-1)
11	Newseries works to	a - 1 - 1, a - 2 - 1, b - 3 - 1, c - 0 - 1, d - 2 - 1.
12	Numerical methods	a - 1 - 1, a - 0 - 1, b - 2 - 1, c - 3 - 1, c - 4 - 1,
12	Numerical methods	u^{-2-1} , $u^{-1} + b = 1 + b = 1 + c = 2 + c = 4 + 1$
15	Numerical methods	a - 1 - 1, a - 0 - 1, 0 - 3 - 1, c - 3 - 1, c - 4 - 1, d - 2, 1, d - 4, 1
14	Numerical methods	a = 1 + a = 6 + b + 2 + b = 5 + a = 3
14		a = 1 = 1, a = 0 = 1, 0 = 2 = 1, 0 = 3 = 1, 0 = 3 = 1, 0 = 3 = 1
15	General revision	$1, 0^{-1}$
15		1 c - 4 - 1
		1,0 1 1,

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a-1, a-6, b-2, b-5, c-3, c- 4, d-2, d-4	a-1, a-6, b-2, b-5, c-3, c-4, d-2, d-4

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-6, b-2, b-5, c-3, c-4, d-2, d-4	a-1, a-6, b-2, b-5, c-3, c-4, d-2, d-4

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

" Engineering Solid Mechanics- Fundamentals and Applications", A.R. Ragab and S.E. Bayoumi, CRC Press, 1999 -

13.3- Recommended books

1- W.F. Hosford and R. M. Caddell, "Metal forming", Printce Hall Inc., N.J., 1986.

Periodicals, Web sites, Course notes, etc:

1.

B. 9. *Facilities Required for Teaching and Learning:*

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or show

Course coordinator

Prof. Mahmoud Abo-Elkier

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Finite Element Method
PRE 605
Production Engineering and Mechanical Design
20/11/2013

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: - 0 hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical
	offered.	Design
	(If general elective available in many programs indicate this rather than list programs.)	
4	Level at which this course is offered.	M. Sc.
5	Pre-requisites course.	
6	Pre-requisites by Topic	
7	Coordinator	Prof. Dr. Mahmoud Abo-Elkhier
8	External Evaluator(s)	Prof.

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Concept of finite element method - Application of finite element method of problems under limited conditions- Applications to heat transfer – Fluid mechanics and mechanics of rigid bodies.

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing numerically the engineering application using the finite element method. As well as, this course provide the student with required skills of determining the critical sections in engineering application. This course will also provide students with the required skills of modeling of engineering application using the finite element method.

B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Conoral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A3	B2, B5	C1,C3	D
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	A-1) Understand, discuss, evaluate advanced theories, methods and models, and their implications in production engineering practice	a-1-1) Use quantitative methods to solve production engineering problems.
Childerstanding	A-3 Know the scientific developments in the production engineering	a-2-1) Prove the ability to use e finite element bases to analyze production engineering applications.
Intellectual skills	B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Able to use quantitative methods of analyzing production problems
Skills	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Able to quantify predicted results, and assess impacts using numerical methods and models
Professional skills	C-1) Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques.	c-3-1) Employ a suitable software to design problem
	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Apply numerical modeling to engineering problems.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Judge the obtained numerical data.

Week	Contents	ILOs covered by this topic
INO.		
1	Introduction to finite element method.	a-1-1, a-3-1, b-2-1, c-1-1,c-3-1.
2	Review of the elasticity equations.	a-1-1, a-3-1, b5-1 c-1-1,c-3-1
3	One dimensional element.	a-1-1, a-3-1, b-2-1, b5-1, c-1-1
4	Truss in two-dimensional.	a-1-1, a-3-1, b-2-1, b5-1,c-3-1, d-2-1
5	Truss in three-dimensional	a-1-1, a-3-1, b-2-1, b5-1,c-3-1, d-2-1.
6	Constant strain triangle.	a-1-1, a-3-1, b-2-1, b5-1 c-1- 1,c-3-1, d-2-1.
7	Axisymmetric applications.	a-1-1, a-3-1, b-2-1, b-5-1, c-3-1, d-2-1.
8	Isoparametric formulation and numerical integration	a-1-1, a-3-1, b-2-1, b5-1,c-3-1, d-2-1.
9	Analysis of frame	a-1-1, a-3-1, b-2-1, c-1-1,c-3-1, d-2-1
10	Analysis of frame	a-1-1, a-3-1, b-2-1, b5-1 c-1- 1,c-3-1, d-2-1.
11	Three-dimensional analysis	a-1-1, a-3-1, b-2-1, c-1-1,c-3-1, d-2-1.
12	Three-dimensional analysis.	a-3-1, b-2-1, b5-1, c-1-1,c-3-1, d-2-1
13	Dynamic consideration	a-1-1, a-3-1, b-2-1, b5-1 c-1- 1,c-3-1, d-2-1
14	Applications to heat transfer	a-1-1, a-3-1, b-2-1, b5-1 c-1- 1,c-3-1, d-2-1, d4-1.1
15	General revision	a-1-1, a-3-1, b-2-1, b5-1, c-1-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a-1, a-3, b-2, b-5,, c-1, c-3, d-2	a-1, a-2, b-2, b-5,, c-1, c-3, d-2

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-3, b-2, b-5,, c-1 c-3.	a-1, a-3, b-2, b-5,, c-1, c-3.

Weighting of assessments:

Mid-Term Examination	0 %
Final-Term Examination	100 %
Oral Examination	0 %
Practical Examination	0 %
Semester Work	0 %
Other Types of Assessment	0 %
Total	100 %

B.8. List of References:

Essential books (text books):

1- "Introduction to Finite Element in Engineering", I. R. Chandrupatla and A. D. Belegundu, 3rd ed., Prentice Hall,2003.

Recommended books

- 1- "Finite Element Analysis : Theory and Application", S. Moaveni, Prentice Hall, 2007.
- 2- "The finite Element Method for Engineers, 4th ed., K.H. Huebner, D.L. Deuhirst and D.E. Smith, John Willy& Sons, 2001

Periodicals, Web sites, Course notes, etc:

1- "Finite Element in Analysis and Design: An International Journal"

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or data show

Course coordinator

Prof. Mahmoud Abo-Elkhier

Head of Dept.

Prof. Taha El-Taweel

Date-- <u>19 Novemeber 2013</u>

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Forming Theory PRE 606 Production Engineering and Mechanical Design 20/11/2013

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification	
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	3	hrs
3	Contact Hours	Lecture: 3 hrs/week Lab: - 0 hrs/week	
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many programs indicate this rather than list programs.)		
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	PRE	604
6	Pre-requisites by Topic	Elasticity and Plasticity	
7	Coordinator	Prof. Dr. Mahmoud Abo-Elkhier	
8	External Evaluator(s)	Pr	rof.

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Pressing loads and stresses - Friction hills - Stress and strain in rolling –effect of front and back tension - Moment and power in rolling - Extrusion pressures – Wire Drawing - Critical stresses in bending.

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. and Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing metal forming processes. As well as, this course provide the student with required skills of determining the required force, torque and power for metal forming processes. This course will also provide students with the required skills of identifying the properties of final products.

B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Conoral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A2	B2, B5	C3,C6	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	A-1) Understand, discuss, evaluate advanced theories, methods and models, and their implications in production engineering practice	a-1-1) Use quantitative methods to solve production engineering problems.
Understanding	A-2) Has hands on concepts, principles, ethics and tools of elasticity and plasticity	a-2-1) Prove the ability to use elasticity and plasticity bases to analyze production engineering applications.
Intellectual skills	B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Able to use quantitative methods of analyzing production problems
	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Able to quantify predicted results, and assess impacts using mathematical methods and models
	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Able to assess limitations of the available numerical methods.
Professional skills	C-6) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-6-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.
General skills D-2) Apply information technology tools related to specific production engineering discipline.		d-2-1) Apply information technology tools related to specific production engineering discipline.

Week	Contents	ILOs covered by this topic
110.		
1	Review of stress and strain	a-1-1, a-2-1, b-2-1, c-3-1,c-6-1, d-2-1.
2	Review of plastic deformation	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1, d-2-4.
3	Yield criteria and work hardening	a-2-1, b-2-1, b-5-1, c-3-1, c-6-1, d-2-4.
4	Mechanism of forming processes	a-1-1, a-2-1, b-2-1, c-3-1, c-6-1, d-2-1.
5	Study of strain rate and temperature effects	a-1-1, a-2-1, b-2-1, c-3-1,c-6-1, d-2-1,
6	Metal forming machines	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1, d-2-4.
7	Upper and lower bounding theories	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1, d-2-1.
8	Slap Method	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1, d-2-4.
9	Analysis of rolling process	a-1-1, b-2-1, b-5-1, c-3-1, c-6-1, d-2-1.
10	Analysis of extrusion process	a-1-1, a-2-1, b-2-1, b-5-1, c-3-1, d-2-4.
11	Analysis of extrusion process	a-1-1, a-2-1, b-3-1,c-6-1, d-2-1.
12	Sheet metal forming	a-1-1, a-2-1, b-2-1, c-3-1,c-6-1
13	Analysis of wire drawing	a-1-1, a-2-1, b-5-1, c-3-1,c-6-1, d-2-1.
14	Stresses in bending process	a-1-1, a-2-1, b-2-1, b-5-1, c-6-1
15	General revision	a-1-1, a-2-1, b-2-1, b-3-1, c-3-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a-1, a-2, b-2, b-5,, c-3, c-6, d-2	a-1, a-2, b-2, b-5,, c-3, c-6, d-2

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-2, b-2, b-5,, c-3, c-6.	a-1, a-2, b-2, b-5,, c-3, c-6.

Weighting of assessments:

Mid-Term Examination	0 %
Final-Term Examination	100 %
Oral Examination	0 %
Practical Examination	0 %
Semester Work	0 %
Other Types of Assessment	0 %
Total	100 %

B.8. List of References: Essential books (text books):

1- "Metal Forming : Mechanics and Metallurgy", W.F. Hosford and R.M. Caddell, Cambridge Press, 4th ed. 2007.

Recommended books

1- "Fundamental of metal forming", M. P. Groove, John Willey& Sons, 2002.

Periodicals, Web sites, Course notes, etc:

- 1. J. of Material Processing Technology
- 2. J of Applied Plasticity

B. 9. *Facilities Required for Teaching and Learning:*

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or data show

Course coordinator

Prof. Mahmoud Abo-Elkhier

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 Novemeber 2013

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Advanced Topics in Machining

PRE 607

Production Engineering and Mechanical Design

21/3/2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical
	offered.	Design
	(If general elective available in many programs	
	indicate this rather than list programs.)	
4	Level at which this course is offered.	M. Sc.
5	Pre-requisites course.	None
6	Pre-requisites by Topic	None
7	Coordinator	Prof. Dr. Mahmoud Abo-Elkhier
8	External Evaluator(s)	Prof.

B- <u>PROFESSIONAL INFORMATION:</u>

B.1. Description as in Post Graduate Studies Bulletin:

Machinability of materials – Evaluation of machinability – New cutting tool materials – Cutting tool failure and durability – Recent failure theories – Economical aspects – Surface integrity.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to equip students to work as technologists/scientists, at an advanced level, in the fields of advanced machining technology. In addition, and more generally:

1-To develop an understanding of the full range of benefits which may be achieved through advanced manufacturing technology and the need to match manufacturing techniques with the product, the company and the market.

2- To provide a broad appreciation of materials, processes and techniques together with themethods used for their evaluation in advanced manufacturing technology and systems.

3- To encourage a flexible systems approach to originating, adapting and developing processes and systems to meet changing technological, management, economic and social criteria.

1. B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)				
Field	Knowledge &	Intellectual	Professional	Ganaral Skilla	
	Understanding	Skills	Skills	General Skills	
Programme Academic					
Standards that the course	A1,A5	B4, B6	C2,C3	D2	
contribute in achieving					

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge & Understanding	a-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to advanced machining
	a5. Know quality basics for working in the production engineering field.	a5-1) Know quality basics for working in the machining field.
Intellectual skills	b4. Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b4-1) Implement a scientific and organized research for solving machining problems
	b6. Plan to develop performance of the production engineering systems.	b6-1) Plan to develop performance of the machining engineering systems.
Professional	c2. Write and evaluate technical reports.	. C2-1 Write and evaluate technical reports related to advanced machining.
skills	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Evaluate the available methods and tools in the machining engineering field.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific production engineering discipline.

Week	Contents	ILOs covered by this topic
No.		
1	Intoduction to machining	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1
2	Machinability of materials	C2-1,C3-1, d2-1, a1-1,a5-1, b4-1
3	Evaluation of machinability –	,a1-1,a5-1, b4-1, b6-1
4	Evaluation of machinability	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1
5	New cutting tool materials —	,a1-1,a5-1, b4-1, b6-1
6	New cutting tool materials —	C2-1,C3-1, d2-1
7	Cutting tool failure and durability	,a1-1,a5-1, b4-1, b6-1
8	Cutting tool failure and durability	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1
9	Cutting tool failure and durability	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1
10	Recent failure theories	,a1-1,a5-1, b4-1, b6-1
11	Recent failure theories	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1
12	Recent failure theories	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1
13	Surface integrity	C2-1,C3-1, d2-1
14	Surface integrity	,a1-1,a5-1, b4-1, b6-1
15	General revision	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1, b6-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1

B.7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

Books Recommended: Text Books:

2. A. Ghosh, and A. K. Mallik, Affiliated East-West Press Pvt. Ltd. New Delhi "Manufacturing Science"

13.3- Recommended books

Periodicals, Web sites, Course notes, etc:

1. N. K. Mehta, Machine tool design

2. E. P. DeGarmo, J. T Black, R. A. Kohser, Prentice Hall of India, New Delhi (ISBN 0-02-

3 978760) "Materials and Processes in Manufacturing" (8th Edition), ,

4. G.F. Benedict, Marcel Dekker, Inc. New York (ISBN 0-8247-7352-7) "Nontraditional Manufacturing Processes" -

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or show

Course coordinator

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Nontraditional machining methods

PRE 608 Production Engineering and Mechanical Design

2012

.....

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specification	
1	Credit hours	3cr-hrs	
2	Exam. Hours	3	hrs
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week	
3	Program(s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many programs indicate this rather than list programs.)		
4	Level at which this course is offered.	M.	Sc.
5	Pre-requisites course.	N	one
6	Pre-requisites by Topic	None	
7	Coordinator	Prof. Dr. Mahmoud S. Hewidy	
8	External Evaluator(s)	Prof. Dr.	

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Theory of NTM- Needs of NTM - Classifications - Advantages and limitations - ECM - EDM - LBM - AJM and WJM - Hybrid methods and others.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to build the capacities of the students to:

1. Apply knowledge of mathematics, science and production engineering concepts to the solution of manufacturing problems.

2. Apply the basics and approach scientific research as well as using its different tools in advanced machining processes.

3. Apply perfectly the techniques, skills and up to date tools for nontraditional machining practices.

4. Employ the available sources to realize the highest benefits with continuous performance.

5. Apply the analytical approaches for studying the nontraditional machining problems.

	National Academic Reference Standard (NARS)			
Field	Knowledge &	Intellectual	Professional	Conoral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A5	B2, B4	C1,C4	D2
contribute in achieving				

B.3. Relationship between the course and the programme

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge& Understanding	A-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1-1) Explain different non traditional machining processes for solving engineering problems using knowledge of mathematics, science and engineering concepts.
	A-5) Know quality basics for working in the production engineering field.	a-5-1) Define the quality basics for nontraditional methods.
Intellectual skills	 B-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information. B-4) Implement a scientific and organized research for solving production engineering problems and select the most appropriate. 	 b-2-1) Create solutions to manufacturing problems through the applications of nontraditional machining techniques. b-4-1) Demonstrate a specific research for solving nontraditional machining problems and select the most appropriate.
Professional skills	C-1) Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques. C-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	 c-1-1) Use efficiently the available tools as computer programs and measuring instruments and apply nontraditional machining techniques c-4-1) Solve the engineering problems to reach conclusions and compare the results with others.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Improve information technology tools related to nontraditional machining techniques

Week No.	Contents	ILOs covered by this topic
1	Theory of NTM & Needs of NTM	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1
2	Classifications of NTM	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1
3	Advantages and limitations of NTM	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1
4	Electochemical machining (ECM)	a-1-1, a-5-1, b2-1, b-4-1, c-1-1, c-4-1 d-2-1
5	Electric Discharge Machining (EDM)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
6	Laser Beam Machining (LBM)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
7	Electron Beam Machining (EBM)	a-1-1, a-5-1 ,b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
8	Plasma Arc Cutting (PAM)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
9	Abrasive Jet Machining (AJM)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
10	Water Jet Machining (WJM)	a-1-1, a-5-1, b-2-1,b-4-1, c-1-1, c-4-1 d-2-1
11	Ultrasonic Machining (USM)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
12	Hybrid methods	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
13	Laser-assisted Electrochemical Machining (ECML)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1
14	Ultrasonic-assisted Electrochemical Machining (USMEC)	a-1-1, a-5-1, b-2-1, b-4-1,c-1-1, c-4-1 d-2-1
15	Electrochemical Discharge Grinding (ECDG)	a-1-1, a-5-1, b-2-1, b-4-1, c-1-1, c-4-1 d-2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSPE-PRE)
	Methods	ILOs Item No.	Outcomes No.
1	Assignments and Exercises	a-1, a-5,b-2,b-4,c-1, c- 4,d-2	a-1, a-5,b-2,b-4,c-1, c-4,d-2

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSPE-PRE) Outcomes No.
1	Written exam	a-1, a-5,b-2,b-4,c-1, c- 4,d-2	a-1, a-5,b-2,b-4,c-1, c-4,d-2

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

1- McGeough, J. A., "Advanced Methods of Machining", Chapman and Hall, London, 1988. *Periodicals, Web sites, Course notes, etc:*

1- Annals of CIRP.

2- J. of Material Processing Technology

B. 9. Facilities Required for Teaching and Learning:

- lecture room with LCD or show

Course coordinator

Prof. Mahmoud S. Hewidy

Head of Dept.

Date-- 5 Feb. 2012

Prof. Dr. Taha Ali El-Taweel

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Numerically Controlled Machine Tools (CNC-I)

PRE 609

Production Engineering and Mechanical Design 20/11/2013

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specification
1	Credit hours	<u>3cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week
3	Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs.)	Production Engineering & Mechanical Design
4	Level at which this course is offered.	M. Sc.
5	Pre-requisites course.	None
6	Pre-requisites by Topic	None
7	Coordinator	Prof. Dr.
8	External Evaluator(s)	Prof.

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. *Description as in Post Graduate Studies Bulletin:*

Utilization of computer - aided manufacturing in different applications – Languages employed in NC and CNC in machine tools – NC systems and manual part programming – Different methods of computer–assisted part programming – Evaluation costs using computer machinability programming – Role of computer numerically controlled machines in manufacturing automation.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	20%	30%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of utilization of computer-aided manufacturing in different applications and languages employed in NC and CNC in machine tools.

This course also provides the student with means of evaluation costs using computer machinability programming and the role of computer numerically controlled machines in manufacturing automation.

B.3. Relationship between the course and the program

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Conorol Skille
	Understanding	Skills	Skills	General Skills
Programme Academic	A1 A3 A5&		C1C2	
Standards that the course	AI, AS, AS&	B1, B2 & B6	C1, C2, C3 & C4	D2
contribute in achieving	AU		CJ&C4	

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	A1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a1-1) Discuss the theory, basics and practices of mathematics, sciences which related to CNC technology.
Knowledge & Understanding	A3) Know the scientific developments in the production engineering.	a3-1) Discuss the scientific developments in the Languages employed in NC and CNC in machine tools.
	A5) Know quality basics for working in the production engineering field.	a5-1) List quality basics for working in the production engineering field dealing with machining.
	A6) Understand principles and ethics of the scientific research.	a6-1) Explain the principles of the scientific research relevant to the field of machining technology.
	B1) Analyze and evaluate the data and use them to solve the production engineering problems.	b1-1) Analyze and evaluate the data and use them to solve the CNC machining problems.
Intellectual skills	B2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b2-1) Create the suitable solutions of problems dealing with manufacturing through the application of specific methods of computer–assisted part programming.
	B6) Plan to develop performance of the production engineering systems.	b6-1) Plan to develop performance of the production engineering by evaluation costs using computer machinability programming
Professional skills	C1) Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques.	c1-1) Apply efficiently available tools as computer programs and the suitable techniques for solving the production engineering problems.

Field	Programme ILOs that the course contribute in achieving	Course ILOs	
	C2) Write and evaluate technical reports.	c2-1) Write technical reports about CNC machining.	
	C3) Evaluate the available methods and	c3-1) Evaluate the available methods	
	tools in the production engineering	and tools in the production	
	field.	engineering field.	
	C4) Define, plan, analyze, and solve the	c4-1) Use different methods for	
	engineering problems to reach	manufacturing parts and compare	
	conclusions and compare the results	the results with others.	
	with others.		
	D2) Apply information technology tools	d2-1) Revise the information	
General skills	related to specific production	technology tools related to CNC	
	engineering discipline.	technology.	

Week	Contents	ILOs covered by this
No.		topic
1	Introduction to NC technology	a1-1, a3-1, b5-1, d2-1
2	Utilization of computer – aided manufacturing in different	a1-1, a6-1,c2-1, d2-1
3	Languages employed in NC and CNC in machine tools	a1-1, a3-1, c1-1, c3-1,
4	The Components of the CNC system	a1-1, a3-1, b1-1
5	Machine Movements in Numerical Control Systems	a1-1, a5-1, c3-1, c4-1,
6	Control systems of Numerical Control Machine Tools	b1-1, b2-1, b6-1
7	Part Program structure	B2-1, b6-1, c1-1, c3-1,
8	Manual part programming	c1-1, c3-1, c4-1,
9	Miscellaneous functions	a1-1, a3-1, c1-1, c3-1,
10	Sequence block	a3-1, a5-1,c2-1, d2-1
11	Computer-Assisted Part Programming	b2-1, b6-1, c3-1, c4-1,
12	Math in CNC programming	b1-1, b2-1, d2-1
13	CNC and CAD / CAM	c1-1, c4-1, d2-1
14	Evaluation costs using computer machinability	b1-1, b6-1, c1-1, c3-1,
	programming	
15	Role of computer numerically controlled machines in manufacturing automation	b2-1, b6-1, c1-1, c3-1,

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course ILOs	To Assess (ARSEP)
	Methods	Item No.	Outcomes No.
1	Discussion, Assignments and	a1-1, a3-1, a5-1, a6-1,	A1, A3, A5, A6,
	Exercises, Problem solving,	b1-1, b2-1, b6-1, c1-1,	B1, B2 ,B6,
	Brain storming, Site visits,	c2-1 c3-1, c4-1, d2-1,	C1,C2, C3, C4, D2
	Discovering and Self-learning		
B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a3-1, a5-1, a6-1, b1-1, b2-1, b3-1, b4-1, c1-1,c2-1, c3-1, c4-1, d2-1	A1, A3, A5, A6, B1, B2 , B6, C1, C2, C3, C4, D2

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

Michael Fitzpatrick, "Machining and CNC Technology", Career; 2 edition (January 8, 2010) <u>Recommended books</u>

Smith, Graham T, "CNC Machining Technology, Volume 3: Part Programming Techniques", Springer, 1993.

Periodicals, Web sites, Course notes, etc:

"International Journal of Advanced Machining Processes", Springer

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.):-

1. A lecture room with computer and LCD or data show

Course coordinator

Prof.

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 20 November 2013

Faculty of Engineering

COURSE SPECIFICATION

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Advanced Manufacturing Methods PRE 610 Production Engineering and Mechanical Design

21/3/2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Spec	ification
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week	Lab: - hrs/week
3	Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs.)	Production Enginee Design	ring and Mechanical
4	Level at which this course is offered.	Ν	A. Sc.
5	Pre-requisites course.]	None
6	Pre-requisites by Topic]	None
7	Coordinator		
8	External Evaluator(s)		

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Introduction- IC Manufactory- IC Packing- CD and DVD manufacturing- Die designs and manufacturing

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to equip students to work as technologists/scientists, at an advanced level, in the fields of advanced machining technology. In addition, and more generally: 1- To engender an understanding of the management role in the investigation, implementation and operation of machining systems for efficiency, cost effectiveness and quality of product.

2- To provide an overview of design, modelling, simulation and prototyping software applicable to manufacturing processes and systems.

3- To encourage a flexible systems approach to originating, adapting and developing processes and systems to meet changing technological, management, economic and social criteria.

	National Academic Reference Standard(NARS)				
Field	Knowledge &	Intellectual	Professional	Conorol Skilla	
	Understanding	Skills	Skills	General Skills	
Programme Academic					
Standards that the course	A1,A5	B4, B6	C2,C3	D2	
contribute in achieving	,				

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge &	a-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to advanced manufacturing
Understanding	a-5. Know quality basics for working in the production engineering field.	a5-1) Know quality basics for working in the manufacturing field.
Intellectual	b-4. Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b4-1) Implement a scientific and organized research for solving manufacturing problems
skills	b-6. Plan to develop performance of the production engineering systems.	b6-1) Plan to develop performance of the manufacturing engineering systems .
Professional	c-2. Write and evaluate technical reports.	. C2-1 Write and evaluate technical reports related to advanced manufacuring.
381113	C-3) Evaluate the available methods and tools in the production engineering field.	c-3-1) Evaluate the available methods and tools in the manufacturing engineering field.
General skills	D-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific production engineering discipline.

B.5. Syllabus to be Covered:

Week	Contents	ILOs covered by this topic
No.		
1	Introduction to Advanced Manufacturing Methods	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1,
		d2-1
2	IC Manufactory	C2-1,C3-1, d2-1, a1-1,a5-1, b4-1
3	IC Packing	,a1-1,a5-1, b4-1, b6-1
4	IC Packing	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1
5	IC Packing	,a1-1,a5-1, b4-1, b6-1
6	CD and DVD manufacturing	C2-1,C3-1, d2-1
7	CD and DVD manufacturing	,a1-1,a5-1, b4-1, b6-1
8	CD and DVD manufacturing	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1
9	CD and DVD manufacturing	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1
10	CD and DVD manufacturing	,a1-1,a5-1, b4-1, b6-1
11	Die designs and manufacturing	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1
12	Die designs and manufacturing	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1
13	Die designs and manufacturing	C2-1,C3-1, d2-1
14	Die designs and manufacturing	,a1-1,a5-1, b4-1, b6-1
15	General revision	C2-1,C3-1, d2-1,a1-1,a5-1, b4-1,
		b6-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1	a1-1,a5-1, b4-1, b6-1, C2-1,C3-1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. *List of References:*

••

Essential books (text books):

Books Recommended: Text Books:

1. Juneja, Fundamentals of metal cutting

2. A. Ghosh, and A. K. Mallik, Affiliated East-West Press Pvt. Ltd. New Delhi "Manufacturing Science"

13.3- Recommended books

- 1. Arshinov, Metal cutting theory & cutting tool design
- 2. Mikhal Groover, CAD/CAM
- 3. N. K. Mehta, Machine tool design

4. G.F. Benedict, Marcel Dekker, Inc. New York (ISBN 0-8247-7352-7) "Nontraditional Manufacturing Processes"

Periodicals, Web sites, Course notes, etc: 1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or show

Course coordinator

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Computer – Aided Manufacturing PRE 611

Production Engineering and Mechanical Design

21/3/2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification	
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week	
3	Program(s) in which the course is	Production Engineering and	
	offered.	Mechanical Design	
	(If general elective available in many programs		
	indicate this rather than list programs.)		
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Prof.	
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Fields and applications – Implementation of computer in manufacturing – Experience systems in production and application using computers – Required files – Integration between computer aided manufacturing (CAM) and computer aided design (CAD) – Data base in manufacturing fields – Evaluation of cost using computer – Programming of machinability systems – Control – Robot.

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	20%	30%	30%	10%	100%

B.2. Course Objectives:

This course introduces you to modern manufacturing with three areas of emphasis: computer aided design, computer aided manufacturing, and computer aided process planning. This course has two goals. First you will learn two CAD/CAM software: CAD software SolidWorks and CAM software

BobCAD/CAM. The second goal is to learn the important theory, concepts, technology, and the state-of-the-art development in CAD/CAM. It is very important to understand how the CAD/CAM systems work and know the current industry status. The subjects covered in this class include part design specification, NC programming, process planning, and Computer aided process planning (CAPP), CAD and CAM systems, and CAD/CAM data exchange.

1. B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	General Skills
	Understanding	Skills	Skills	Ocheral Skills
Programme Academic				
Standards that the course	A1, A2	B1,B2, B5	C1,C4	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge & Understanding	 a-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies. a2. Know the exchangeable effect among the 	 a-1-1 Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to manufacturing by computer a2-1 Know the exchangeable
	production engineering practices and reflection on the environment.	effect among the production engineering practices affecting manufacturing.
	b1. Analyze and evaluate the data and use them to solve the production engineering problems.	b1-1Analyze and evaluate the data and use them to solve the manufacturing problems
Intellectual skills	b-2) Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2-1) Produce solutions to manufacturing problems through the application of production engineering knowledge.
	B-5) Evaluate the risks in the design of specific production engineering system.	b-5-1) Evaluate the risks in the design of the manufacturing system using simulation software
Professional	C1. Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques.	Use efficiently the available tools as computer software to solve manufacturing problems
56115	C-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.
General skills	D-2) Apply information technology tools related to specific production engineering	d-2-1) Apply information technology tools related to

Field	Programme ILOs that the course contribute in achieving		Course ILC	Ds
	discipline.	specific disciplin	production e.	engineering

B.5. Syllabus to be Covered:

Week	Contents	ILOs covered by this
No.		topic
1	Introduction	a1-1, a2-1, b1-1,b2-1,
		b5-1, C1-1,C4-1, d2-1
2	Fundamentals of CAD Systems	a1-1, a2-1, C4-1, d2-1,
		b5-1, C1-1
3	Fundamentals of CAM systems	A1-1, a2-1, C4-1, d2-1
4	Fields and applications	a1-1, a2-1, b5-1, C1-1
5	Implementation of computer in manufacturing	a1-1, a2-1, b5-1, C1-1
6	Integration between computer aided manufacturing (CAM) and	a1-1, a2-1, C4-1, d2-1
	computer aided design (CAD)	
7	Data base in manufacturing fields	a1-1, a2-1,
8	Plastic stress-strain relations	a1-1, a2-1, C4-1, d2-1
9	Evaluation of cost using computer	a1-1, a2-1, b5-1, C1-1
10	Experience systems in production and application using	a1-1, a2-1,
	computers	
11	Programming of machinability systems	a1-1, a2-1, C4-1, d2-1
12	Programming linear and contouring profile	a1-1, a2-1, b5-1, C1-1
13	CNC lathe programming	a1-1, a2-1, b5-1, C1-1
14	Control – Robot	a1-1, a2-1, b5-1, C1-1
15	General revision	a1-1, a2-1, b5-1, C1-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a1-1, a2-1, b1-1,b2-1, b5-1, C1-1,C4-1, d2-1	a1-1, a2-1, b1-1,b2-1, b5-1, C1- 1,C4-1, d2-1

B.7. <u>Assessments:</u> <u>Student assessment methods</u>:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a2-1, b1-1,b2-1, b5-1, C1-1,C4-1, d2-1	a1-1, a2-1, b1-1,b2-1, b5-1, C1- 1,C4-1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. *List of References*:

Essential books (text books):

Textbooks

• Required: None

• Recommended:

Computer-Aided Manufacturing; Tien-Chien Chang, Richard A. Wysk, and Hsu-Pin Wang, 2nd Ed. (1998), Prentice Hall. (ISBN 0-13-754524-X) Reserved at Library Call No. TS155.6 C48 1998

Fundamentals of Graphics Communication, 3rd Ed. (2002), Gary Bertoline, Eric Wiebe, and Craig Miller, McGraw/Hill. (CAD drafting reference)

13.3- Recommended books

Automation, Production Systems, and Computer Aided Manufacturing, 2nd Ed.

(2001), Mikell P. Groover, Prentice Hall. (ISBN 0-13-088978-4)<u>*Periodicals, Web sites,*</u> <u>*Course notes, etc:*</u>

1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or show

Course coordinator

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Advanced Methods of measurements

PRE 612

Production Engineering and Mechanical Design

2006

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u> .
2	Exam. Hours	3 <u>hrs</u> .
3	Contact Hours	Lecture: 2 hrs/week.
3	Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs.)	Master
4	Level at which this course is offered.	Level 600
5	Pre-requisites course.	Metrology & Calibration + Maintenance
6	Pre-requisites by Topic	Measuring Systems - Design of Instruments
7	Coordinator	Prof. Dr. Ahmed Mahmoud Easa + Dr. Faowqy Ramadan
8	External Evaluator(s)	Prof. Dr.

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Advanced treatment with measuring instruments and measuring groups - Design of measuring instruments – Measuring errors and its static analysis – Calibration of measuring tools-Miscellaneous measurements – Sensors and transducers – Strain gauges and its use.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to build the capacities of the students to conduct quantitative research through application of advanced measuring methods and the analysis of classical model. Targets also includes, but not limited to:

- 1. Design the instruments, and collect primary data and analyze the measuring results.
- 2. Be able to present data; and
- 3. Have hands on both advanced measuring methods and advanced computer programs for monitoring the instrument under operating conditions.

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	General
	Understanding	Skills	Skills	Skills
Programme Academic				
Standards that the course	A1, A3	B1, B5	C1,C2	D2
contribute in achieving				

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	A-1) Apply knowledge of production engineering concepts in practice of advanced measurements.	a-1-1) Understand the fundamentals and knowledge of information technology in measuring practice errors.
Onderstanding	A-3) Apply advanced engineering technology in practice of measuring and calibration of instruments.	a-3-1) Know requirements for safe operation and conservation of measuring instruments.
Intellectual	B-1) Identify and analyze problems in the area of advanced calibration methods of instruments.	b-1-1) Able to use standard methods for calibrating the tools and instruments of measurements.
skills	B-5) Make career decisions in the light of available production engineering information about advanced methods of measurements.	b-5-1)Assess risks in professional practices of advanced measurements.
Professional	C-1) Apply the professional measuring technologies in the field of measurements.	c-1-1) Able to assess limitations and opportunities to decide on measuring instruments.
skills	C-2) Write professional calibration reports.	c-2-1) Write and evaluate professional reports in the field of measuring results.
General skills	D-2) Effectively communicate all kinds and sharing ideas with different measuring labs.	d-2-1) Use information technology of advanced measuring methods to serve the development of professional practice.

B.5. Syllabus to be Covered	:
-----------------------------	---

Week No.	Contents	ILOs covered by this topic
1.	Static characteristics of instruments.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1
2.	Measuring groups.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1, c-2-1
3.	Basics of the Design of measuring Tools.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1, c-2-1
4.	Design of measuring Tools.	a-1,a-3,b-1,b-2,c-1,c-2,d-1.
5.	Design of measuring instruments.	a-1,a-3,b-1,b-2,c-1,c-2,d-1.
6.	Static analysis of measuring errors.	a-1-1, a-3-1, b-1-1, b-5-1, c-2-1, , d-2-1.
7.	Calibration methods of measuring tools.	a-3-1, b-5-1, c-2-1, , d-2-1.
8.	Calibration chart of measuring tools.	a-3-1, b-5-1, c-2-1, , d-2-1.
9.	Application of the Calibration on some types of measuring Tools.	a-1-1,b-1-, b-5-1, c-2-1, d-2-1.
10.	Application of the Calibration on some types of measuring instruments.	a-1-1,b-1-, b-5-1, c-2-1, d-2-1.
11.	Basics of sensors and transducers.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1, c-2-1
12.	Methods of measuring using sensors.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1, c-2-1
13.	Methods of measuring using transducers.	a-1-1, a-3-1, b-1-1, b-1-1, c-1-1, c-2-1
14.	Basics of strain gauge.	a-1-1, a-3-1, b-1-1, b-5-1, c-1-1, c-2-1, d-2-1.
15.	Using (strain gauge) in measurements.	a-1-1, a-3-1, b-1-1, b-5-1, c-1-1,c-2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP)
	Methods	ILOs Item No.	Outcomes No.
1	Lectures, Exercises and Technical Reports.	a-1, a-3, b-1, b-5, c-1, c-2,	a-1, a-3, b-1, b-5, c-1, c-2, d-2,

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-3, b-1, b-5, c-1, c- 2, d-2,	a-1, a-3, b-1, b-5,c-1, c-2, d-2,

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

- 1. Ernest O. Doebelin " Measurement Systems Application and Design" Fourth Edition ,Tata , McGraw Company Limited,2000.
- 2. D.M.Anthony," Engineering Metrology ",Pergamon Press, New york, 1987.
- 3. E.O. " Control System Principles and Design," Wiley, New York, 1985.

Periodicals, Web sites, Course notes, etc:

-Error Analysis, http://science.widener.edu/svb/stats/error.html, Scott Van Bramer. -Error Analysis, http://teacher.nsrl.rochester.edu/phy_labs/AppendixB/AppendixB.html.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms, metrology and computer laboratories,.etc.).

- 1. Classroom.
- 2. Data show.

Course coordinator

Prof. Dr. Ahmed M. Easa. Dr. Faowqy Ramadan

Head of Dept. Prof. Dr. Taha El-Taweel

Course Title: Course Code:

Design for Manufacturing

PRE 613

Department Offering the Course: Last Date of Approval: Production Engineering and Mechanical Design

21/3/2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification		
1	Credit hours	3 <u>cr-hrs</u>		
2	Exam. Hours	<u>3 hrs</u>		
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week		
3	Program(s) in which the course is offered. (If general elective available in many programs	Production Engineering and Mechanical Design		
4	indicate this rather than list programs.)	M.S.		
4	Level at which this course is offered.	NI. 5C.		
5	Pre-requisites course.	None		
6	Pre-requisites by Topic	None		
7	Coordinator	Prof.		
8	External Evaluator(s)	Prof.		

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Principles – Manufacturing materials – Design for different machining processes – Manual and automatic assembly – Automatic assembly using robots – Manufacturing and assembly integration.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide a broad practical introduction to design, and materials and manufacturing processes. It provides opportunities for learners to gain skills in designing and in communicating design proposals. It allows learners to explore the properties and uses of materials and to make models and prototypes of products. It also allows learners to consider the various factors that impact on a product's design. The learner will consider the life cycle of a product from

its inception through design, manufacture, and use, including its disposal or re-use. In addition it provide learners with opportunities to develop skills that are of general value for learning, life and work: the ability to read drawings and diagrams; the ability to articulate and communicate design ideas and practical details; the ability to devise and develop practical solutions to design problems, and the ability to manufacture their design ideas.

1	B.3 .	Relationship	between	the	course	and	the	programe
---	--------------	---------------------	---------	-----	--------	-----	-----	----------

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	General Skills
	Understanding	Skills	Skills	Ueneral Skills
Programme Academic				
Standards that the course	A1, A2	B1, ,B7	C3,C4	D2
contribute in achieving				

Field	Programme ILOs that the course contribute	Course ILOs
Vrandadaa 6	a1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to Design for Manufacturing .
Understanding	a2. Know the exchangeable effect among the production engineering practices and reflection on the environment.	. a2-1 Know the exchangeable effect among the production engineering practices affecting design and manufacture and reflection on the environment.
	b1. Analyze and evaluate the data and use them to solve the production engineering problems.	b1-1 analyze the input data to take the proper decision in design
Intellectual skills	b7. Take the suitable decision for different professional situations.	b7-1 Take the suitable decision for different professional situations according the exchangeable effect among the production engineering practices
Professional	c1. Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques.	c1-1 Use efficiently the available tools as computer programs for design and final design
skills	c-4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others in the design and manufacture stages.
General skills	d-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to design and manufacture.

B.5. Syllabus to be Covered:

Week	Contents	ILOs covered by
No.		this topic
1	Principles of Design and Manufacturing	
2	Manufacturing materials	a1-1,a2-1,b1-1,b7-
		1,c1-1,c4-1,d2-1
3	Manufacturing materials	b1-1,b7-1, c4-1,d2-1
4	Design for different machining processes	a1-1,a2-1, c4-1,d2-1
5	Design for different machining processes	c1-1,c4-1, d2-1
6	Design for different machining processes	a1-1,a2-1 c1-1,c4-1
7	Manual and automatic assembly	a1-1,a2-1 c1-1,c4-1
8	Manual and automatic assembly	b1-1,b7-1, c4-1,d2-1
9	Application on Design for different machining processes	a1-1,a2-1, d2-1
10	Automatic assembly using robots	b1-1,b7-1, c4-1,d2-1
11	Automatic assembly using robots	a1-1,a2-1 c1-1,c4-1
12	Manufacturing and assembly integration	a1-1,a2-1 c4-1,d2-1
13	Manufacturing and assembly integration	b1-1,b7-1, d2-1
14	Manufacturing and assembly integration	a1-1,a2-1 c4-1,d2-1
15	General revision	b1-1,b7-1, a1-1,a2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning Methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Assignments and Exercises	a1-1,a2-1,b1-1,b7-1,c1- 1,c4-1,d2-1	a1-1,a2-1,b1-1,b7-1,c1-1,c4-1,d2-1

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1,a2-1,b1-1,b7-1,c1- 1,c4-1,d2-1	a1-1,a2-1,b1-1,b7-1,c1-1,c4-1,d2- 1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. <u>List of References</u>: <u>Essential books (text books):</u>

13.3- Recommended books

1-W.F. Hosford and R. M. Caddell, "Metal forming", Printce Hall Inc., N.J., 1986.

Periodicals, Web sites, Course notes, etc:

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with LCD or show

Course coordinator

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Materials Handling Systems Design PRE 614

Production Engineering and Mechanical Design

20/11/2013

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specification	
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week	
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many		
	programs indicate this rather than list		
	programs.)		
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Prof. Dr. Sabry ElShakery	
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Introduction (classification of such systems - Hoisting – conveying – Manipulating – systems) - Mechanical design methods of such systems- Kinematics and dynamics analysis - Design synthesis of such systems (to achieve maximum conveying) - capacity and/or specified conveying path) - Design Analysis of such system considering the undesirable phenomena -Dynamic stability of each systems

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing and classify of hoisting, conveying and manipulating systems. As well as, analyzing mechanical design methods of such systems dealing with kinematics and dynamics analysis for achieving maximum conveying capacity and/or achieving specified conveying path. Also, this course provide the student with

required skills of design analysis of such system considering the undesirable phenomena, dynamic stability of each systems.

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Comorel Shills
	Understanding	Skills	Skills	General Skills
Programme Academic	A1 A2 A3&	B1 B2 B3&	C1C2	
Standards that the course	$A1, A2, A3\alpha$	B1, B2, B3&	$C_{1,C_{2}}$	D1
contribute in achieving	A4	D4	CJ&C+	

B.3. Relationship between the course and the programe

Field Programme ILOs that the course contribute in achieving		Course ILOs	
	A1) Understand theory, basics and practices of mathematics, sciences and various design engineering technologies.	a1-1) Discuss the theory, basics and practices of mathematics, sciences which related to handling mechanisms and machines	
Knowledge &	A2) Know the exchangeable effect among the machine design practices and reflection on the environment.	and reflection on the environment.	
Understanding	A3) Know the scientific developments in the machine design dealing with applied mechanics.	a31-) Discuss the scientific developments in the role of handling in engineering.	
	A4) Know quality basics for working in the machine design field.	a4-1) List quality basics for working in the production engineering field dealing with handling mechanisms and machines.	
	B1) Analyze and evaluate the data and use them to solve the machine design and applied mechanics problems.	b1-1) Analyze and evaluate the data and use them to solve the handling machines problems.	
Intellectual	B2) Produce solutions of problems through the application of specific applied mechanics discipline knowledge based on limited and possible information.	b2-1) Create the suitable solutions to problems dealing with handling machines through the application of specific production engineering discipline knowledge.	
	B3) Deal with different and contradicting knowledge to solve the problems.	b3-1) Design handling machines dealing with different and contradicting knowledge.	
	B4) Evaluate the risks in the design of specific production engineering system.	b4-1) Evaluate the risks in the design of handling machines of specific production engineering system.	
Professional skills	C1) Use efficiently available tools as computer programs as well as building ideas through simulation and applying applied mechanics techniques.	c1-1) Apply efficiently the available tools as computer programs and the suitable techniques for solving the handling machines problems.	
	C2) Write technical reports.	c2-1) Write technical reports about handling mechanisms and machines.	

Field	Programme ILOs that the course contribute in achieving	Course ILOs
C3) Evaluate the available method tools in the applied mechanics field		c3-1) Evaluate the available different methods for solving the handling machines problems.
	C4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c4-1) Use different methods for solving the handling machines problems and compare the results with others.
General skills	D1) Communicate effectively in writing, verbally through illustrations.	d1-1) Write an a correct technical report with verbally.

B.5. Syllabus to be Covered:

Week	Contents	ILOs covered by this topic
No.		
1	Types of hoisting systems	a1-1, a2-1, b1-1, d1-1
2	Types of conveying systems	a1-1, a3-1, d1-1
3	Types of manipulating systems	a1-1, a3-1, c1-1, c2-1,
4	Types of spherical conveying mechanisms	a1-1, a2-1, b1-1
5	Introduction to kinematics analysis	a1-1, a4-1, c3-1, c4-1,
6	Kinematics analysis	b1-1, b2-1, b1-1, b2-1
7	Calculation the angular and linear velocity and	b2-1, b3-1, c1-1, c2-1,
	acceleration	
8	Dynamic analysis	c1-1, c2-1, c3-1, c4-1,
9	Design synthesis conveying systems to achieve	a1-1, a2-1, c1-1, c2-1,
	maximum conveying	
10	Design synthesis manipulating systems to achieve	a2-1, a4-1, d1-1
	maximum conveying	
11	Design synthesis conveying systems to achieve	b3-1, b2-1, c2-1, c3-1,
-	maximum capacity or specified path	
12	Design synthesis manipulating systems to achieve	b1-1, b3-1, d1-1
	maximum capacity or specified path	
13	Design Analysis of conveying system considering the	c1-1, c4-1, d1-1
	undesirable phenomena	
14	Design Analysis of manipulating system considering	b1-1, b4-1, c1-1, c3-1,
	the undesirable phenomena	
15	Applications	b3-1, b2-1, c2-1, c4-1,

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning Methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Discussion, Assignments and	a1-1, a2-1, a2-1, a3-1,	A1, A2, A3, A4,
	Exercises, Problem solving,	a4-1, b1-1, b2-1, b3-1,	B1, B2 ,B3, B4,
	Brain storming, Site visits,	b4-1, c1-1, c2-1, c3-1,	C1, C2, C3, C4, D1
	Discovering and Self-learning	c4-1, d1-1,	

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a2-1, a2-1, a3-1, a4-1, b1-1, b2-1, b3-1, b4-1, c1-1, c2-1, c3-1, c4-1, d1-1,	A1, A2, A3, A4, B1, B2 ,B3, B4, C1, C2, C3, C4, D1

Weighting of assessments:

Mid-Term Examination	%
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

"Hand Book of pneumatic conveying engineering ", David Mills and others, Library of Congress

Recommended books

"Material Handling and Production Systems Modeling", Furman, Kei, Springer

Periodicals, Web sites, Course notes, etc:

- 1. http://hoistingequipment.economicalin.info/
- 2. http://manipulation.livejournal.com/profile

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.).

1. A lecture room with computer and LCD or data show

Course coordinator

Prof. Sabry El-Shakery Dr/ Khaled Khader

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 20 November 2013

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Mechanisms PRE 615 Production Engineering and Mechanical Design

20/11/2013

A-<u>COURSE IDENTIFICATION AND INFORMATION</u>:

No.	Item	Specific	ation
1	Credit hours	3 <u>cr-h</u>	rs
2	Exam. Hours	3 hrs	<u>8</u>
3	Contact Hours	Lecture: 3 hrs/week	Lab: - hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many		
	programs indicate this rather than list		
	programs.)		
4	Level at which this course is offered.	M. Se	с.
5	Pre-requisites course.	None	e
6	Pre-requisites by Topic	None	e
7	Coordinator	Prof. Dr. Sabry ElShaker	y
8	External Evaluator(s)	Prof.	

B- <u>**PROFESSIONAL INFORMATION:**</u>

B.1. Description as in Post Graduate Studies Bulletin:

Introduction (Mechanisms tapes - planar and spherical ones) - Kinematics analysis using vector methods - Dynamic analysis – Calculating of driving power or torque - Analysis – methods and Applications.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the student with means of analyzing mechanisms tapes which planar or spherical ones, as well as, kinematics analysis using vector methods and dynamic analysis. Also, this course provide the student with required skills of calculating the driving power or torque and analyzing methods in addition to some applications.

B.3. Relationship between the course and the programe

	Nation	al Academic Ref	erence Standard(N	NARS)
Field	Knowledge &	Intellectual	Professional	Conoral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic	A1 A2 A28	D1 D2 D2&	C1C2	
Standards that the course	$A1, A2, A3\alpha$	$\mathbf{D1}, \mathbf{D2}, \mathbf{D30}$	C1, C2, C3 & C4	D1
contribute in achieving	A4	D4	CJAC4	

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	A1) Understand theory, basics and practices of mathematics, sciences and various design engineering technologies.	a1-1) Discuss the theory, basics and practices of mathematics, sciences which related to Mechanisms
Knowledge &	A2) Know the exchangeable effect among the machine design practices and reflection on the environment.	a2-1) Describe the exchangeable effect among using special mechanisms and reflection on the environment.
Onderstanding	A3) Know the scientific developments in the machine design dealing with applied mechanics.	a31-) Discuss the scientific developments in the role of mechanisms in engineering.
	A4) Know quality basics for working in the machine design field.	a4-1) List quality basics for working in the production engineering field dealing with mechanisms.
Intellectual skills	B1) Analyze and evaluate the data and use them to solve the machine design and applied mechanics problems.	b1-1) Analyze and evaluate the data and use them to solve the mechanisms problems.
	B2) Produce solutions of problems through the application of specific applied mechanics discipline knowledge based on limited and possible information.	b2-1) Create the suitable solutions of problems dealing with mechanisms through the application of specific applied mechanics discipline knowledge.
	B3) Deal with different and contradicting knowledge to solve the problems.	b3-1) Design mechanisms dealing with different and contradicting knowledge.
	B4) Evaluate the risks in the design of specific production engineering system.	b4-1) Evaluate the risks in the design of mechanisms of specific production engineering system.
	C1) Use efficiently available tools as computer programs as well as building ideas through simulation and applying applied mechanics techniques.	c1-1) Apply efficiently available tools as computer programs and the suitable techniques for solving the mechanisms problems.
Professional skills	C2) Write technical reports.	c2-1) Write technical reports about mechanisms.
	C3) Evaluate the available methods and tools in the applied mechanics field.	c3-1) Evaluate the available different methods for solving the mechanisms problems.

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	C4) Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c4-1) Use different methods for solving the mechanisms problems and compare the results with others.
General skills	D1) Communicate effectively in writing, verbally through illustrations.	d1-1) Write an a correct technical report with verbally.

B.5. Syllabus to be Covered:

Week	Contents	ILOs covered by this topic
No.		
1	Types of joints and pairs	a1-1, a2-1, b1-1, d1-1
2	Types Mechanisms tapes	a1-1, a3-1, d1-1
3	Types of planar mechanisms	a1-1, a3-1, c1-1, c2-1,
4	Types of spherical mechanisms	a1-1, a2-1, b1-1
5	Introduction to kinematics analysis	a1-1, a4-1, c3-1, c4-1,
6	Kinematics analysis using vector methods	b1-1, b2-1, b1-1, b2-1
7	Calculation the angular and linear velocity	b2-1, b3-1, c1-1, c2-1,
8	Calculation the angular and linear acceleration	c1-1, c2-1, c3-1, c4-1,
9	Introduction to dynamic analysis	a1-1, a2-1, c1-1, c2-1,
10	Introduction to driving power or torque	a2-1, a4-1, d1-1
11	Calculating of driving torque of simple mechanism	b3-1, b2-1, c2-1, c3-1,
12	Calculating of driving power or torque for a complex	b1-1, b3-1, d1-1
	mechanism	
13	Different methods of calculations	c1-1, c4-1, d1-1
14	Applications	b1-1, b4-1, c1-1, c3-1,
15	Advanced applications	b3-1, b2-1, c2-1, c4-1,

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course ILOs	To Assess (ARSEP)
	Methods	Item No.	Outcomes No.
1	Discussion, Assignments and	a1-1, a2-1, a2-1, a3-1,	A1, A2, A3, A4,
	Exercises, Problem solving,	a4-1, b1-1, b2-1, b3-1,	B1, B2 ,B3, B4,
	Brain storming, Site visits,	b4-1, c1-1, c2-1, c3-1,	C1, C2, C3, C4, D1
	Discovering and Self-learning	c4-1, d1-1,	

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a2-1, a2-1, a3-1, a4-1, b1-1, b2-1, b3-1, b4-1, c1-1,	A1, A2, A3, A4, B1, B2, B3, B4,
		c2-1, c3-1, c4-1, d1-1	C1, C2, C3, C4, D1

Weighting of assessments:

Mid-Term Examination	%
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

"Machines & Mechanisms: Applied Kinematic Analysis", David Myszka, Pearson Education,2012 Recommended books

Recommended books

"Introduction to Robotics", H. Harry Asada, Department of Mechanical Engineering, Massachusetts Institute of Technology.

Periodicals, Web sites, Course notes, etc:

- 1. http://www.journals.elsevier.com/mechanism-and-machine-theory/
- 2. http://mechanismsrobotics.asmedigitalcollection.asme.org/journal.aspx

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms and laboratories (i.e.; classrooms and laboratories, extent of computer access, etc.):-

1. A lecture room with computer and LCD or data show

Course coordinator

Prof. Sabry El-Shakery Dr/ Khaled Khader

Head of Dept.

Prof. Taha El-Taweel

Date-- 20 November 2013

Course	Title:
Course	Code:
Departr	nent Offering the Course:

Vibrations of Machines

PRE 617

2013

Production Engineering and Mechanical Design

Last Date of Approval:

A-<u>COURSE IDENTIFICATION AND INFORMATION:</u>

No.	Item	Specification	
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3	Lab: - hrs/week
		hrs/week	
3	Program(s) in which the course is offered.	Production Engi	neering and Mechanical
	(If general elective available in many programs	Design	
	indicate this rather than list programs.)		
4	Level at which this course is offered.	M. Sc.	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Dr. Ahmed Ham	ada
8	External Evaluator(s)	Prof. Dr.	

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Concepts of vibration under harmonic excitation – Concepts of forced Vibration - Vibration of multi degrees of freedom system – Numerical methods for eigens solution - Random vibration.

Course Subject Area:

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective for this course is for students to learn analytical, experimental, and numerical treatment of vibration phenomena.. Random vibration theories based on the Statistics, probability, and passive and active structural oscillation control are introduced. It also provides the student with an appreciation of the nature of noise and vibration hazards in the workplace and the effects of noise, and vibration, on people. It also details the approach in carrying out noise and vibration assessments in the workplace and in the general environment.

B.3. Relationship between the course and the programme

	National Academic Reference Standard (NARS)			
Field	Knowledge &	Intellectual	Professional	Conoral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic	A1 A2 A28	D1 D2		
Standards that the course	$A1, A2, A3\alpha$	D1, D2, D3, D4	C1,C2, C3&C4	D1
contribute in achieving	A4	D3& D4		

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	a1. Understand theory, basics and practices of mathematics, sciences and various production-engineering technologies.	a1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to the displine
	a6. Understand principles and ethics of the scientific research	a6-1) Understand principles of mechanical vibrations. and construction of machine tools.
Intellectual skills	b2. Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b2-1) Produce solutions to vibration of machine tools with application of production engineering knowledge.
	b5. Evaluate the risks in the design of specific production engineering system.	b5-1) b-5-1) Evaluate the risks in the design of the macine and induced vibrations .
	c3. Evaluate the available methods and tools in the production engineering field.	c3-1) Evaluate the available methods and tools in the production engineering field.
skills	c4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c4-1) Define, plan, analyze, and solve the engineering problems concerning vibration of machines to reach conclusions and compare the results with others.
	D1) Communicate effectively in writing, verbally through illustrations.	d2-1) Apply information technology tools related to machine tool vibrations.
General skills	d4. Use different resources to obtain knowledge and information	. d1) Use different resources such as the library and internet research to obtain knowledge and information

B.5. Syllabus to be Covered:

Week No.	Contents	ILOs covered by this topic
1	Introduction and general knowledge	b2-1, b5-1, c3-1,c4-1, d2-1
2	Concepts of vibration under harmonic excitation	a1-1, a6-1, c3-1,c4-1, d2-1,
3	Concepts of vibration under harmonic excitation	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,
4	Concepts of vibration under harmonic excitation	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,
5	Concepts of forced Vibration	a1-1, b5-1, c3-1,c4-1, d2-1,
6	Concepts of forced Vibration	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1
7	Concepts of forced Vibration	a6-1, b2-1, b5-1, c3-1,c4-1
8	Vibration of multi degrees of freedom system	b2-1, b5-1, c3-1,c4-1, d2-1
9	Vibration of multi degrees of freedom system	a1-1, a6-1, b2-1, c3-1,c4-1, d2-1,
10	Vibration of multi degrees of freedom system	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,
11	Numerical methods for eigens solution.	a1-1, a6-1, b2-1, b5-1, c4-1,
12	Numerical methods for eigens solution.	a1-1, c3-1,c4-1, d2-1,
13	Random vibration	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,
14	Random vibration	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,
15	General revision	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1,

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course ILOs	To Assess (ARSPE-PRE)
	Methods	Item No.	Outcomes No.
1	Assignments and Exercises	a1-1, a6-1, b2-1, b5-1, c3- 1,c4-1, d2	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1, d2-1

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSPE-PRE) Outcomes No.
1	Written exam	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1, d2-1	a1-1, a6-1, b2-1, b5-1, c3-1,c4-1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. <u>List of References</u>: <u>Essential books (text books):</u>

 1-Cyril M.Harris"shock of machines with applications"4th edition,1976.
 2-A.Maher"theory of machines with applications"1989
 3. Andrew D. Dimarogonas, Sam Haddad, 1992, Vibration for Engineers, Prentice Hall, New Jersey
 4. John M. Vance, 1988, Rotordynamics of Turbomachinery, John Wiley & Sons, Inc., New York
 5. Michel Lalanne, Guy Ferraris, 1990, Rotordynamics Prediction in Engineering, John Wiley & Sons, Inc., New York
 6. Textbook: Inman, D. J., 2007, Engineering Vibration, 3rd ed., Prentice-Hall
 7-Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw Hill
 8-Kelly, G., 2000, Fundamentals of Mechanical Vibrations, 2nd ed., McGraw Hill

Periodicals, Web sites, Course notes, etc:

: http://pioneer.netserv.chula.ac.th/~pphongsa/

B. 9. *Facilities Required for Teaching and Learning:*

- lecture room with LCD or show

Course coordinator Dr. Ahmed Hamada

Head of Dept.

Prof. Dr. Taha Ali El-Taweel

Date: <u>12 Nov. 2013</u>

Course Title:

Advanced Dynamics of Structures

Course Code: Department Offering the Course: PRE 618

Production Engineering and Mechanical Design

Last Date of Approval:

21 / 3 / 2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specific	ation
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week	Lab: -0 hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many programs		
	indicate this rather than list programs.)		
4	Level at which this course is offered.	Master in En	gineering
5	Pre-requisites course.	None	e
6	Pre-requisites by Topic	None	e
7	Coordinator	Dr. Ahmed Hamada	
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Pre-requisite: PRE 604

Parametric methods of dynamical systems - Mathematical models of dynamical structures – Design - modeling - simulation and analysis of results - Application of Matlab – Analysis of dynamical machines - Structural characteristics development - Control of mechanical vibration - Dynamic of structures - Predictive response and calculations of applied forced mechanical systems

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective for this course is for students to understand the dynamic response and control of structures. It also provides students with methodology to construct the physical and mathematical models of structural oscillations and their mathematical solutions. It also expose the students the principles and methods of dynamic analysis of structures and to prepare them for designing the structures for different dynamic loads.

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	General
	Understanding	Skills	Skills	Skills
Programme Academic				
Standards that the course	A1,A6	B2,B5	C3,C4	D2
contribute in achieving				

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge& Understanding	a1. Understand theory, basics and practices of mathematics, sciences and various production-engineering technologies.	a1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to dynamics of Structure
	a6. Understand principles and ethics of the scientific research	dynamics and strucures
Intellectual skills	b2. Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b2-1) Produce solutions to dynamic of structure through the application of production engineering knowledge.
	b5. Evaluate the risks in the design of specific production engineering system.	b5-1) b-5-1) Evaluate the risks in the design of the structural dynamics
Desfersional	c3. Evaluate the available methods and tools in the production engineering field.	c3-1) Evaluate the available methods and tools in the production engineering field.
skills	c4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c4-1) Define, plan, analyze, and solve the engineering problems in the field of dynamics and structure to reach conclusions and compare the results with others.
General skills	d2. Apply information technology tools related to specific production engineering discipline.	d2-1) Apply information technology tools related to specific production engineering discipline.

B.5. <u>Syllabus to be Covered</u>:

Week	Contents	ILOs covered by this topic
No.		
1	Parametric methods of dynamical systems	b2-1, b5-1, c3-1,c4-1, d2-1,
2	Mathematical models of dynamical structures	a1-1, a6-1, c3-1,c4-1, d2-1
3	Mathematical models of dynamical structures	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1
4	Design - modeling - simulation and analysis of results	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1
5	Design - modeling - simulation and analysis of results	a1-1, b5-1, c3-1,c4-1, d2-1
6	Design - modeling - simulation and analysis of results	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1
7	Application of Matlab	a6-1, b2-1, b5-1, c3-1,c4-1, d2- 1
8	Analysis of dynamical machines	b2-1, b5-1, c3-1,c4-1, d2-1,d4-1
9	Structural characteristics development	a1-1, a6-1, b2-1, c3-1,c4-1, d2- 1
10	Control of mechanical vibration	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1
11	Dynamic of structures	a1-1, a6-1, b2-1, b5-1, c4-1, d2- 1
12	Dynamic of structures	a1-1, c3-1,c4-1, d2-1
13	Predictive response and calculations of applied forced mechanical systems	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1,
14	Predictive response and calculations of applied forced mechanical systems	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1
15	Predictive response and calculations of applied forced mechanical systems	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning Methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Assignments and Exercises	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1,	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1

B.7. <u>Assessments:</u> <u>Student assessment methods</u>:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a6-1, b2-1, b5-1, c3- 1,c4-1, d2-1	a1-1, a6-1, b2-1, b5-1, c3-1,c4- 1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

- Essential books (text books):

1. Mario Paz, Structural Dynamics : "Theory and Computation", Kluwer Academic Publication, 2004

2. Anil K.Chopra, "Dynamics of Structures", Pearson Education, 2001

3 John M.Biggs, "Introduction to Structural Dynamics", McGraw Hill, 1964

- Recommended books

4. Leonard Meirovitch, "Elements of Vibration Analysis", McGraw Hill, 1986

Engineering Structures", Elsevier Publications, 1984 *Periodicals, Web sites, Course notes, etc:* 1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms

1. A lecture room with LCD or show

Course coordinator

Dr. Ahmed Hamada

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Dynamics of Multi-bodies systems
PRE 619
Production Engineering and Mechanical Design
21 / 3 / 2012

A-<u>COURSE IDENTIFICATION AND INFORMATION:</u>

No.	Item	Specification	
1	Credit hours	3 <u>cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week	Lab: -0 hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical	
	offered.	Design	
	(If general elective available in many programs		
	indicate this rather than list programs.)		
4	Level at which this course is offered.	Master in Engineering	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Dr. Mohamed Hesham Belal	
8	External Evaluator(s)	Prof.	

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Introduction to rigid body mechanics, structural mechanics and continuum mechanics.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The aims of this course are to provide the Student, upon completing the Production Engineering Programme, with the basic knowledge and skills of how to analysis and formulate mathematical models of problems in dynamics of multi-bodies systems formed from collection of elastic and rigid

subsystems. This course will also provide students with the ability to improve the performance of multi-bodies systems with practical applications.

This course will also provide students with the required skills of identifying, formulating and solving fundamental engineering problems.

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Conorol Skilla
	Understanding	Skills	Skills	General Skins
Programme Academic				
Standards that the course	A1,A3,A6	B1,B6	C3,C4	D1
contribute in achieving				

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	A1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1 Recognize the main elements of a multi-bodies systems.
Knowledge& Understanding	A3. Know the scientific developments in the production engineering.	a-5 Identify Principles formulation of Hamltonian functions and derivation of canonical equations of motion
	A6. Understand principles and ethics of the scientific research.	a-17 Select Formulation of various types of generalized forces subjected to multi-bodies systems with applications
	B1. Analyze and evaluate the data and use them to solve the production engineering problems.	b-2 Evaluate Dynamics of multi- bodies systems formed from collection of elastic and rigid subsystems.
SKIIIS	B6. Plan to develop performance of the production engineering systems.	b-13 Apply the principles of Stability of multi-bodies systems.
	C3. Evaluate the available methods and tools in the production engineering field.	c-3 Employ a suitable techniques and software packages for the Computational methods
Professional skills	C4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-17 Plan the Condensation techniques (Applications of various types of structural dynamic condensation process).
General skills	D1. Communicate effectively in writing, verbally and through illustrations and mathematical equations.	d-1 Judge the created soft-ware by working team.

B.5. Syllabus to be Covered:

Week No.	Contents	ILOs covered by this topic
1	- Introduction to multi-bodies systems:	
	- Concepts and Basic Technical terms.	a1 &a3
	- Basic elements.	
2	- Kinematics of supports:	
	- Constraints (Formulation types and classifications of kinematic	a1 &a6
	constraints)	
3	Generalized forces (Formulation of various types of generalized	
	forces subjected to multi-bodies systems with applications)	b1&a6
4	- Virtual work (kinematic and dynamic formulation with	c3&b6
	applications)	03000
5	- Kinetic Analysis.	c4
	- Energies of multi-bodies systems (formulation and types)	· · ·
6	- Lagrangian (formulation of lagrange equation of motion –	c3&d1
	practical application on multi-bodies mechanics.	
7	- Hamiltonian (Principles formulation of Hamltonian functions	
	and derivation of canonical equations of motion).	c4&d1
	- Practical Application.	
8	- Condensation techniques (Applications of various types of	a1 &a6
	structural dynamic condensation process).	
9	- Stability of multi-bodies systems (concepts conditions).	a3&a6
10	- KOUIIN - HUITIZ CITIEITA.	
10	- Modeling of multi-bodies systems.	a3 &a2
11	Computational methods (Applications an discrete distributed	
11	and discretized systems)	b1&c4
12	- Nonlinearity (concents and applications)	c3&b6
13	- Mechanical of elastic bodies and applications	c4
14	- Dynamics of multi-bodies systems formed from collection of	
±.	elastic and rigid subsystems.	c3
15	- Discussion on some selected papers in the field.	c4&d1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning Methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Assignments and Exercises	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1,	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1,a3,a6, b1,b6, c3,c4	a1,a3,a6, b1,b6, c3,c4
Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

- Essential books (text books):

- Recommended books

- 1- Ahmed Shabana , Dynamics of multi-bodies systems,
- 2- Meirovitch, Computational methods in structural dynamics,
- 3- Hurty, Dynamics of structures,

Periodicals, Web sites, Course notes, etc:

1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms 1. A lecture room with LCD or show

Course coordinator

Dr. Mohamed Hesham Belal

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Mechanics of composite materials

PRE 620

Production Engineering and Mechanical Design

2013

COURSE IDENTIFICATION AND INFORMATION:

No	Item	Specification		
•				
1	Credit hours	3 <u>cr-hrs</u>		
2	Exam. Hours	<u>3 hrs</u>		
3	Contact Hours	Lecture: 3	Lab: - hrs/week	
		hrs/week		
3	Program(s) in which the course is offered.	Production Engineering and Mechanical		
	(If general elective available in many	Design		
	programs indicate this rather than list			
	programs.)			
4	Level at which this course is offered.	M. Sc.		
5	Pre-requisites course.	None		
6	Pre-requisites by Topic	None		
7	Coordinator	Dr. Badr Mohamed B	adr Abdelbary	
8	External Evaluator(s)	Prof. Dr.		

B- <u>**PROFESSIONAL INFORMATION:**</u>

B.1. Description as in Post Graduate Studies Bulletin:

The purpose of this course is to introduce students to understand the topical problems of mechanics of advanced composite materials whose mechanical properties are controlled by high-strength and high-stiffness continuous fibers embedded in polymeric, metal, or ceramic matrix.

Course Subject Area:	
----------------------	--

Math. and Basic Sciences	Basic Eng. Science	Applied Eng. And Design	Computer application and ICT	Projects and practice	Total
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

At the completion of this course it is desired that each student be able to:

- 1. Structures and properties of reinforcing fibers and matrix materials
- 2. Mechanics concepts of continuous and failure mechanisms of fiber composites.
- 3. Dynamics of composite materials.
- 4. Modeling of reinforced and particulate composite material.
- 5. Comparison between analytical and experimental results.

B.3. Relationship between the course and the programme

	Nationa	National Academic Reference Standard (NARS)			
Field	Knowledge &	Intellectual	Professional	General Skills	
	Understanding	Skills	Skills		
Programme Academic					
Standards that the course	a1, a2	b1, b4	c3,c4	d2, d4	
contribute in achieving					

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	a1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1-1) Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to the displine.
	a2. Know the exchangeable effect among the production engineering practices and reflection on the environment.	a-2-1) Understand structures and properties of reinforcing fibers and matrix materials.
Intellectual	b1. Analyze and evaluate the data and use them to solve the production engineering problems.	 b-1-1 Knowledge of stress/strain, fracture, and fatigue of materials. b-1-2 Understand mechanics concepts of continuous and failure mechanisms of fiber composites
SKIIIS	b4. Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b-4-1 An ability to design composite components and apply processing methods to meet desired needs
Professional	c3. Evaluate the available methods and tools in the production engineering field.	c-3-1) Able to assess limitations of the available numerical methods.
skills	c4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1 Solve the engineering problems to reach conclusions and compare the results with others.
General skills	d-2) Apply information technology tools related to specific production engineering discipline.	d-2-1) Apply information technology tools related to specific production engineering discipline.

Week	Contents	ILOs covered by this topic
No.		
1	Introduction: General Knowledge .	a1-1, a 2-1, b 1-1, b 4-1, d 2-1.
2	The simple concepts of mechanical behaviour,	a1-1, a2-1, b1-2, b4-1, c3-1, c4-1.
	such as the broad meanings of stress and strain.	
3	Mechanical nature of composite materials based	a1-1, a 2-1, b1-1, b1-2, b4-1, c3-1,
	on theories of fibre mechanics	c 4-1, d 2-1, d 4-1.
4	Mechanical nature of composite materials based	a1-1, a 2-1, b1-1, b1-2, b4-1, c3-1,
	on theories of fibre mechanics	c 4-1, d 2-1, d 4-1.
5	Dynamics of composite materials	a1-1, a 2-1, b1-1, b1-2, b4-1, c3-1,
		c 4-1, d 2-1, d 4-1.
6	Dynamics of composite materials	a1-1, a 2-1, b1-1, b1-2, b4-1, c3-1,
		c 4-1, d 2-1
7	Modeling of reinforced and particulate composite	a2-1, b1-1, b 4-1, c3-1, c4-1, d2-1
	material	
8	Modeling of reinforced and particulate composite	a2-1, b1-1, b 4-1, c3-1, c4-1, d2-1
	material	
9	Modeling of reinforced and particulate composite	a2-1, b1-1, b 4-1, c3-1, c4-1, d2-1,
	material	
10	Modeling of reinforced and particulate composite	a2-1, b1-1, b 4-1, c3-1, c4-1, d2-1
	material	
11	Comparison between analytical and experimental	a1-1, a2-1, b1-1, b 4-1, c3-1, c4-1,
	results	d2-1
12	Comparison between analytical and experimental	a2-1, b1-1, b 4-1, c3-1, c 4-1, d 2-1
	results	
13	Software for design and analysis of composite	a2-1, b1-1, b 4-1, c3-1, c4-1, d2-1
	structures.	
14	Software for design and analysis of composite	a 2-1, b1-1, b 4-1, c3-1, c4-1, d2-1
	structures.	
15	General revision	a 2-1, b1-1, b 4-1, c3-1, c 4-1, d2-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning MethodsTo Assess Course ILOs Item No.		To Assess (ARSPE-PRE) Outcomes No.
1	Assignments and Exercises	a1-1, a2-1, b1-1, b 4-1, c3-1, c 4-1, d2-1, d 4-1.	a1-1, a2-1, b1-1, b 4-1, c3-1, c 4- 1, d2-1, d 4-1.

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSPE-PRE) Outcomes No.
1	Written exam	a1-1, a2-1, b1-1, b 4-1, c3-1, c 4-1, d2-1	a1-1, a2-1, b1-1, b 4-1, c3-1, c 4- 1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. *List of References*:

Essential books (text books):

- 1. Isaac M. Daniel and Ori Ishai, Engineering Mechanics of Composite Materials, Copyright © 1994 by Oxford University Press Inc.
- 2. Valery V. Vasiliev and Evgeny V. Morozov, MECHANICS AND ANALYSIS OF COMPOSITE, @ 2001 Elsevier Science Ltd.
- 3. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, CRC Press

Periodicals, Web sites, Course notes, etc:

1-. http://www.tue.nl/bib

2- Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

B. 9. *Facilities Required for Teaching and Learning:*

- lecture room with LCD or show

Course coordinator Dr. Badr Mohamed Badr Abdelbary

Head of Dept.

Prof. Dr. Taha Ali El-Taweel

Date: <u>12 Nov. 2013</u>

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Acceptance Sampling PRE 621 Production Engineering and Mechanical Design 20/9/2013

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification	
1	Credit hours	3 cr-hrs.	
2	Exam. Hours	3 hrs.	
3	Contact Hours	Lecture: 3 hrs/week.	
3	Program (s) in which the course is offered.		
	(If general elective available in	Master in Production Engineering	
	many programs indicate this rather		
	than list programs.)		
4	Level at which this course is offered.	Level 600	
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	Statistical Quality Control	
7	Coordinator	Dr. ABEER SOBHY EISA	
8	External Evaluator(s)	Prof. Dr	

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Pre-requisite: None

Basic concepts for acceptance sampling - Acceptance sampling for attributes - Acceptance sampling for variables - other acceptance sampling methods.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course after studying is to build the capacities of the students to :

1.Understand the operation of acceptance sampling schemes,

2.Be able to draw an operating characteristic for single sampling plans using attributes, double sampling plans using attributes, and single sampling plans for variables.

3. Be able to select appropriate plans to meet particular conditions.

B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Comorel Strille
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A2	B1,B4,	C1,C2	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	A-1) Apply knowledge of production engineering concepts in operation of acceptance sampling schemes.	a-1-1) Integrate theories, fundamentals and knowledge of information technology in acceptance sampling.
Understanding	A-2) Identify professional production engineering problems and propose statistical solutions for them.	a-2-1) Understand the basics of quality in professional production statistical methods according to specialization.
Intellectual	B-1) Identify and analyze statistical problems in the area of acceptance sampling.	b-1-1) Able to use statistical methods for analyze operating characteristic for single sampling plans using attributes, double sampling plans and using attributes.
skills	B-4) Assess the risks in professional production engineering quality in practices.	b-4-1) Create the desired software dealing with the used statistical methods for analyzing Statistical problems of acceptance sampling.
Professional	C-1) Apply the professional production engineering technologies in the field of statistical quality control.	c-1-1) Able to assess limitations and opportunities to decide on solving the production quality problems.
skills	C-2) Write professional acceptance sampling report.	c-2-1) Write and evaluate professional reports in the field of acceptance sampling.
General skills	D-2) Effectively communicate all kinds and sharing ideas with different acceptance sampling reports.	d-2-1) Use information technology of acceptance sampling operation to serve the development of professional practice.

Week	Contents	ILOs covered by this topic
No.		
1.	Introduction to standard methods of acceptance sampling.	a-1-1, b-1-1, b-4-1, c-1-1
2.	Basic concepts for acceptance sampling.	a-1-1, b-1-1, b-4-1, c-1-1
3.	Analysis of acceptance sampling schemes.	a-1-1, b-1-1, b-4-1
4.	Introduction to acceptance sampling for attributes.	a-1-1, b-1-1, b-4-1, c-1-1
5.	Data analysis using acceptance sampling for attributes.	a-1-1, b-1-1, b-4-1
6.	Solving problems using acceptance sampling for attributes.	a-1-1, b-1-1, b-4-1, , c-1-1,c-2-1
7.	Draw operation characteristics for single sampling plans usin	a-1-1, b-1-1, b-4-1
	attributes.	
8.	Introduction to acceptance sampling for variables.	a-1-1, b-1-1, b-4-1, c-1-1
9.	Data analysis using acceptance sampling for variables.	a-1-1, b-1-1, b-4-1
10.	Solving problems using acceptance sampling for variables.	a-1-1, b-1-1, b-4-1, , c-1-1,c-2-1
11.	Introduction to other different methods of acceptance	a-1-1, b-1-1, b-4-1, c-1-1
	sampling	
12.	Solving problems using other methods of acceptance samplin	a-1-1, b-1-1, b-4-1, , c-1-1,c-2-1
13.	Draw operation characteristics for single sampling plans	a-1-1, b-1-1, b-4-1
	using sampling for variables.	
14.	Draw operation characteristics for some of other single	a-1-1, b-1-1, b-4-1
	sampling plans.	
15.	Selections of appropriate plans to meet particular conditions.	a-1-1, b-1-1, b-4-1, , c-1-1, c-2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Lectures, Exercises and Technical Reports.	a-1, a-2, b-1, b-4, c-1, c- 2	a-1, 2-3, b-1, b-5, c-1, c-2, d-2

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a-2, b-1,b-4, c-1, c- 2.	a-1, a-2, b-1,b-4, c-1, c-2, d-2

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

-Anderson R. G.; "Organization & Methods", N & E Hand book Series.
- Dale H. Besterfiled, et al., "Total Quality Management", Pearson Education, Inc. ISBN 81-297-0260-6.
-.Narendra Singh; "Project Management & Control"; Himalaya Publishing House, Mumbai.

Periodicals, Web sites, Course notes, etc:

- "ISO 9000 Quality Management System", International Trade Center, Geneva.

- Kaoru Ishikawa, "Guide to Quality Control", Asian Productivity Organization, Tokyo.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms (i.e.; classrooms, metrology and computer laboratories,.etc.).

1. Classroom.

2. Data show.

Course coordinator

Dr. ABEER SOBHY EISA

Head of Dept.

Prof. Dr. Taha El-Taweel

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Total Quality Control PRE 622

Production Engineering and Mechanical Design

2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification	
1	Credit hours	<u>3cr-hrs</u>	
2	Exam. Hours	<u>3 hrs</u>	
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week	
3	Program (s) in which the course is offered.	Production Engineering a Design	nd Mechanical
	(If general elective available in many programs indicate this rather than list programs.)	8	
4	Level at which this course is offered.	M. S	с.
5	Pre-requisites course.	None	
6	Pre-requisites by Topic	None	
7	Coordinator	Dr. Omayma Nada	
8	External Evaluator(s)		

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Total quality control for manufacturing and service industries - Factors and tasks for controlling quality - Quality system method: its origin and its economics - Quality engineering technology - Engineering technology for process control - Engineering technology for quality information - Applying total quality control in a manufacturing environment.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to provide the students with the underlying principles and techniques of Total Quality Control (TQC) with emphasis on their application to manufacturing organizations. Students will develop a working knowledge of the best practices in Quality and Process Control.

Students will learn to view quality in a holistic perspective as it must encompass all the phases in the manufacturing of a product. This includes design, manufacturing, quality checks, sales, aftersales services. This course stresses on the system approach to quality and the economics that govern cost-effective systems management.

D2

National Academic Reference Standard(NARS) Field Knowledge & Intellectual Professional General Skills Understanding Skills Skills Programme Academic Standards that the course A1, A2, A5 B2, B4, B6 C3,C4

B.3. Relationship between the course and the programe

B.4. Intended Learning Outcomes (ILOs)

contribute in achieving

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	A1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a1-1) Outline the history of quality and its role in corporate strategy and international competitiveness.a1-2) Compare and contrast different tools for quality improvement
Knowledge & Understanding	A2. Know the exchangeable effect among the production engineering practices and reflection on the environment.	a2-1) Recognize the main dimensions and perspectives of qualitya2-2) Identify the critical factors affecting quality in manufacturing environment.
	A5. Know quality basics for working in the production engineering field	a5-1) Discuss the major concepts related to quality in manufacturing environment.
	B2. Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b2-1) Investigate the sources quality problems b2-2) Suggest performance improvement opportunities
Intellectual skills	B4. Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b4-1) Investigate customer requirements and create the appropriate quality policy to cost effectively satisfy these requirements
	B6. Plan to develop performance of the production engineering systems.	b6-1)Investigate the impact of quality on profitabilityb6-2) Create procedures and propose performance measures to evaluate different improvement alternatives
Professional skills	C3. Evaluate the available methods and tools in the production engineering field.	c3-1) Appraise different measuring and testing equipmentc3-2) Select and apply the suitable tools for to design new products

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	C4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c4-1) Establish procedures for planning and analyzing quality activities c4-2) integrate multiple cross functional quality activities throughout an organization
General skills	D2. Apply information technology tools related to specific production engineering discipline.	d2-1) Demonstrate capabilities in using Minitab software for quality assessment and improvement

Week No.	Contents	ILOs covered by this topic
1	Basic quality concepts and the evolution of quality movement	a1-1, a2-1, a5-1
2	The quality of products and services and total quality control	a2-1, a2-2, a5-1
3	Factors considered in controlling Quality	a2-1, a2-2, b2-1, b6-1
4	Jobs of quality control	a1-1, a1-2, a2-2, a5-1, b2- 1, b2-2
5	The systems approach to quality	a2-1, a5-1, b6-1
6	Establishing the quality system	a2-2, a5-1, b2-1, b2-2, b4- 1
7	Quality costs – foundation of quality systems economics	a2-1, a5-1, b6-1
8	Quality engineering technology	a1-2, a5-1, b6-2, c3-2
9	Techniques for formulation of quality policy	a2-1, b2-2, b4-1, b6-2
10	Quality engineering analytical techniques	a1-2, b2-1, c3-2, d2-1
11	Engineering technology for process control	a5-1, b2-1, b6-2
12	Machine and process capability analysis	a1-2, a5-1, b6-2, c3-1, d2- 1
13	Quality information equipment engineering technology	a2-2, b2-2, c3-1
14	Applying total quality control in a manufacturing environment	a1-2, a2-2, b2-1, b2-2, b6- 2, c3-1, c3-2, d2-1
15	Applying total quality control in a manufacturing environment	a1-2, a2-2, b2-1, b2-2, b6- 2, c3-1, c3-2, d2-1

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and Learning Methods	To Assess Course ILOs Item	To Assess (ARSEP) Outcomes No.
1	Lectures/ Class discussions	a1-1, a1-2, a2-1, a2-2, a5-1, b21, b2-2, b4-1, b6-1, b6-2.	A1, A2, A5, B2, B4, B6, C3,C4, D2
		c3-1, c3-2, c4-1, c4-2, d2-1	

B. 7. *Assessments: Student assessment methods:*

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a1-2, a2-1, a2-2, a5-1, b21, b2-2, b4-1, b6-1, b6-2, c3-1, c3-2, c4-1, c4-2	a1, a2, a5, b2, b4, b6, c3,c4

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

Feigenbaum, A. V., Total Quality Control, 3rd edition, McGraw-Hill, 1983.

Recommended books

Besterfield, Total Quality Management, Pearson Education, 2011

Periodicals, Web sites, Course notes, etc:

American Society for Quality Control <u>http://asq.org/index.aspx</u> International Journal of Quality & Reliability Management <u>http://www.emeraldinsight.com/products/journals/journals.htm?id=ijqrm</u>

International Journal of Productivity and Quality Management http://www.inderscience.com/jhome.php?jcode=IJPQM#moredesc

B. 9. Facilities Required for Teaching and Learning:

- 1. A lecture room with the following facilities (Data show, screen, and laptop, white board and colored pens)
- 2. Computer lab with Minitab 16 software installed

Course coordinator

Dr. Omayma Nada

Head of Dept. Prof. Taha El-Taweel

Date: / /

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Design and Analysis of Experiments

PRE 623

Production Engineering and Mechanical Design

2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week
3	Program(s) in which the course is	Production Engineering and Mechanical
	offered.	Design
	(If general elective available in many programs	
	indicate this rather than list programs.)	
4	Level at which this course is offered.	M. Sc.
5	Pre-requisites course.	None
6	Pre-requisites by Topic	None
7	Coordinator	Prof. Mohamed Fatouh Abdelhamed
		Prof. Taha Ali El-Taweel
8	External Evaluator(s)	Prof. Dr.

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Design and Analysis of Experiments is a powerful technique used for exploring new processes, gaining increased knowledge of the existing processes and optimizing these processes for achieving world class performance. It also gives a solid introduction to the technique through a myriad of Practical examples and case studies.

Course Subject Area:

Math. an	d Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Scien	ces Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objective of this course is to build the capacities of the students to:

1. Learn how to apply design and analysis of experiments in their own work environment.

2. Develop a sound understanding of the theory of design and analysis of experiments and practical aspects of how to design, analyze and interpret the results of a designed experiment

3. Explore the relationships between the key input process variables (or factors) and the output performance characteristics (or quality characteristics).

4. Improve profits and return on investment.

	National Academic Reference Standard (NARS)			
Field	Knowledge &	Intellectual	Professional	Conorol Skille
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A3	B1, B6	C1,C4	D1, D2
contribute in achieving				

B.3. Relationship between the course and the programme

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge&	a1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies	a-1-1 Understand theory, basics and practices of mathematics, sciences and various production engineering technologies related to Design and Analysis of Experiments
Understanding	a3. Know the scientific developments in the production engineering	a-5-1) Know the scientific developments in the production engineering for exploring new processes
Intellectual	b1. Analyze and evaluate the data and use them to solve the production engineering problems.	b-1-1) Create solutions to manufacturing problems through the applications of Design and Analysis of Experiments.
skills	b6. Plan to develop performance of the production engineering systems.	b-6-1) Plan to develop performance of the production engineering systems throughout optimum Design and Analysis of Experiments
Professional	c1. Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering techniques.	c-1-1) Use efficiently the available tools as computer programs and measuring instruments and apply Design and Analysis of Experiments
skills	c4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4-1) Solve the engineering problems to reach conclusions and compare the results with others throughout the design and analysis of experiments.
General skills	D1. Evaluate him-self and determine his personal education needs	d-1-1 Evaluate him-self and determine his personal education needs concerning Design and

Field	Programme ILOs that the course contribute in achieving	Course ILOs
		Analysis of Experiments
	D2. Use different resources to obtain knowledge and information.	d-2-1) Share different resources to obtain knowledge and information about Design and Analysis of Experiments

Week	Contents	ILOs covered by this
No.		topic
1	Introduction	a1-1,a3-1,b1-1.d3-1,d2-1
2	Experiment with single factor (analysis of variance)	a1-1,a3-1,b1-1, c1-1,c4-1
3	Experiment with single factor(analysis of variance)	b1-1,b6-1,c1-1, a1-1,a3-1
	(continued)	
4	Experiment with single factor(analysis of variance)	a1-1,a3-1,b1-1, c1-1,c4-1
	(continued)	
5	Randomized block and latin squre designs	a1-1,a3-1,b1-1 c1-1,c4-1
6	Randomized block and latin squre designs(continued)	a1-1,a3-1,b1-1
7	Randomized block and latin squre designs(continued)	b1-1,b6-1,c1-1
8	Incomplete block design	b1-1,b6-1, a1-1,a3-1
9	Incomplete block design (continued)	b1-1,b6-1,c1-1, a1-1,a3-1
10	Incomplete block design (continued)	a1-1,a3-1,b1-1 c1-1,c4-1
11	Introduction to factorial designs	c1-1,c4-1.d3-1,d4-1
12	Introduction to factorial designs (continued)	b1-1,b6-1, a1-1,a3-1
13	Response surface methods and design	c1-1,c4-1.d3-1,d1-1
14	Response surface methods and design (continued)	b1-1,b6-1,c1-1, a1-1,a3-1
15	Response surface methods and design (continued)	c1-1,c4-1.d3-1,d2-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course	To Assess (ARSPE-PRE)
	Methods	ILOs Item No.	Outcomes No.
1	Assignments and Exercises	A1, A3, B1, B6, C1,C4, D1, D2	A1, A3, B1, B6, C1,C4,D1, D2

B. 7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSPE-PRE) Outcomes No.
1	Written exam	A1, A3, B1, B6, C1,C4, D1, D2	A1, A3, B1, B6, C1,C4,D1, D2

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. *List of References*:

Essential books (text books):

- 1- Jiju Antony "Design of Experiments for Engineers and Scientists", Linacre House, Jordan Hill, Oxford OX2 8DP, 2003.
- 2- Montgomery, D. C. Design and Analysis of Experiments, 2001 (Wiley & Sons, New York).
- 3- Myers, R. H. and Montgomery, D. C. Response Surface Methodology, 1995 (Wiley & Sons, New York).

Periodicals, Web sites, Course notes, etc:

- 1- Derringer, G. and Suich, R. Simultaneous optimization of several response variables. J. of Qual. Techn., 1980, 12, 214-219.
- 2- Castillo, E. D., Montgomery, D. C. and McCarville, D. R. Modified desirability functions for multiple response optimization, *J. of Qual. Techn.*, 1996, 28, 337-345.

B. 9. Facilities Required for Teaching and Learning:

- lecture room with LCD or Data show

Course coordinator

Prof. Mohamed Fatouh Abdelhamed Prof. Taha Ali El-Taweel

Head of Dept.

Prof. Dr.Taha Ali El-Taweel

Date-- 5 Feb. 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Time and Motion Study PRE 624 Production Engineering and Mechanical Design 2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: - hrs/week
3	Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs.)	Production Engineering and Mechanical Design
4	Level at which this course is offered.	M. Sc.
5	Pre-requisites course.	None
6	Pre-requisites by Topic	None
7	Coordinator	Dr. Omayma Nada
8	External Evaluator(s)	

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Productivity - Flow process charts - man-machine charts - Analysis of activity - Motion study - time study - Determine the performance and allowance factors - Determine the standard time for an activity.

Course Subject Area:

Math. an	nd Basic Eng	g. Applied Eng.	Computer application	Projects and	Total
Basic Scie	nces Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The purpose of this course is to provide students with the basic principles that underlie the successful application of motion and time study and to supplement these principles with illustrations and practical examples. This course is mainly concerned with the essential skills for analyzing and improving working methods, procedures and systems in the context of a manufacturing environment in order to achieve productivity improvements, improve equipment utilization, conserve materials and energy, reduce human effort, and advance organizational goals.

B.3. Relationship between the course and the programe

	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Ganaral Skilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A2	B1,B4	C3,C4	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs		
Knowledge &	A1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	 a1-1)Identify different work measurement techniques a1-2) Explain motion study procedure a1-3) Recognize productivity measures. a1-4) Identify factors affecting productivity and 		
Understanding	A2. Know the exchangeable a2-1) Explain how motion and time stud			
	enfect allong the production engineering practices and reflection on the environment.	1 increase productivity		
	B1. Analyze and evaluate the data and use them to solve the production engineering problems.	 b1-1) Design and implement different time study techniques b1-2) Establish and improve work standards b1-3) Design a work sampling study, apply it to various work situations, analyze the results, and estimate the standard time for the work involved b1-4) Record and analyze selected tasks using different flowcharts 		
Intellectual skills	B4. Implement a scientific and organized research for solving production engineering problems and select the most appropriate.	b4-1) Examine an existing work situation and conduct a work improvement program in order to identify low productivity causes.b4-2) Select the applicable work measurement technique		
	B6. Plan to develop performance of the production engineering systems.	b6-1) Use problem-solving skills and creativity to determine the ideal method or approach to obtain a solution to increase efficiency b6-2) Apply principles of motion economy to improve performance		

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	C3. Evaluate the available	c3-1) Apply statistical sampling techniques in
	methods and tools in the	order to effectively measure the utilized
	production engineering field.	resources and to estimate their corresponding
Drofossional		work content
	C4. Define, plan, analyze, and	c4-1) Determine the best sequence of doing work
SKIIIS	solve the engineering problems	c4-2) Develop more productive work
	to reach conclusions and	systems through analyzing real life work systems
	compare the results with others.	and assessing the reasons of inefficiencies
	_	
	D2. Apply information	d2-1) Use spreadsheets to develop time
Companyal alvilla	technology tools related to	standards.
General skills	specific production engineering	
	discipline.	

Week No	Contents	ILOs covered by this topic
110.		topic
1	The concept of productivity/ Factors affecting productivity	a1-1, a1-4, a2-1
2	Measures for total and partial productivity	a1-3
3	Productivity Improvement Techniques	a1-4, a2-1, b6-1
4	Scope and history of Motion and Time Study	a2-1, b6-1
5	The general problem solving process	a1-2, a2-1, c4-1
	Work methods design	
6	Process Analysis	a1-2, b1-4
	Activity Charts- Man and Machine charts	
7	Basic Motion Elements and Work Analysis	a1-2, b1-4
8	Principles of Motion Economy	a1-2, b6-2
9	Time Standards and How They Are Determined	a1-1, b1-1, b1-2, b1-3
10	Direct Time Study	a1-1, b1-1
11	Predetermined Motion Time Systems	a1-1, b1-1
12	Performance Rating	a1-1, b1-1, b1-2
	Time Study Equipment	
13	Work Sampling	a1-1, b1-1, b1-3, c3-1
14	Develop time standards using spreadsheets	d2-1
15	Applications of Time Standards and Time Study	d2-1, b1-1, b1-3, b1-4,
		b6-1, b6-2, c3-1,
		c4-1, c4-2

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and	To Assess Course ILOs Item	To Assess (ARSEP)
	Learning Methods	No.	Outcomes No.
1	Lectures	a1-1, a1-2, a1-3, a1-4, a2-1, b1- 1, b1-2, b1-3, b1-4, b4-1, b4-2, b6-1, b6-2, c3-1, c4-1, c4-2, d2-1	A1, A2, B1, B4, C3, C4, D2

B. 7. Assessments:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1, a1-2, a1-3, a1-4, a2-1, b1- 1, b1-2, b1-3, b1-4, b4-1, b4-2,	A1, A2, B1, B4, C3, C4
		b6-1, b6-2, c3-1, c4-1, c4-2	

Student assessment methods:

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

M. P. Groover, Work Systems and the Methods, Measurement, and Management of Work, Pearson Prentice Hall, 2007

Ralph M. Barnes, Motion and Time Study –Design and Measurement of Work, 7th ed.,. John Wiley & Sons, 1980.

Recommended books

Motion and Time Study for Lean Manufacturing, 2nd ed., F.E. Meyers, Prentice Hall, 1999.

Methods, Standards and Work Design, by B. W. Niebel and A. Freivalds, 12th ed., McGraw-Hill, 2008.

Periodicals, Web sites, Course notes, etc:

International Journal of Productivity and Performance Management http://www.emeraldinsight.com/products/journals/journals.htm?id=ijppm

B. 9. Facilities Required for Teaching and Learning:

1. A lecture room with the following facilities (Data show, screen, and laptop, white board and colored pens)

Course coordinator

Dr. Omayma Nada

Head of Dept. **Prof. Taha El-Taweel**

Date: / /

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Inventory and materials Management
PRE 625
Production Engineering and Mechanical Design
21 / 3 / 2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification
1	Credit hours	3 <u>cr-hrs</u>
2	Exam. Hours	<u>3 hrs</u>
3	Contact Hours	Lecture: 3 hrs/week Lab: -0 hrs/week
3	Program (s) in which the course is	Production Engineering and Mechanical
	offered.	Design
	(If general elective available in many programs indicate this rather than list programs.)	
4	Level at which this course is offered.	Master in Engineering
5	Pre-requisites course.	None
6	Pre-requisites by Topic	None
7	Coordinator	Dr. Mohamed Hesham Belal
8	External Evaluator(s)	Prof.

B- <u>**PROFESSIONAL INFORMATION:**</u>

B.1. Description as in Post Graduate Studies Bulletin:

Types of inventories and its function-Inventory systems-ABC inventory analysis-Basic inventory models-Lot sizing techniques-MRP- Probabilistic inventory models-Theory of constraints.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The aims of this course are to provide the Student, upon completing the Production Engineering Programme, with the basic knowledge and skills of how to control or management of various

inventory systems and formulate mathematical inventory models of problems in fixed and variable demands. This course will also provide students with the ability to make the probabilistic inventory models and state the theory of constraints.

This course will also provide students with the required skills of identifying, formulating and solving fundamental engineering problems.

ist ite programe				
	National Academic Reference Standard(NARS)			
Field	Knowledge &	Intellectual	Professional	Companel Shrilla
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1,A3,A5	B2,B7	C3,C4	D1,D2
contribute in achieving				

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge& Understanding	A1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a-1 Recognize the Types of inventories and its function.
	A3. Know the scientific developments in the production engineering.	a-3 Identify the different types of Basic Inventory models.
	A5. Know quality basics for working in the production engineering field.	a-5 Select the suitable Lot sizing Techniques
Intellectual skills	B2. Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b-2 Solve the Probabilistic inventory models and safety stock.
	B7. Take the suitable decision for different professional situations.	b-7 Take the suitable decision for Basic Inventory models.
Professional skills	C3. Evaluate the available methods and tools in the production engineering field.	c-3 Evalute a suitable techniques and software packages for the Techniques of Inventory control.
	C4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4 Solve the Theory Of Constraints (TOC) and its types.
General skills	D1. Evaluate him-self and determine his personal education needs.	d-1 Judge the created soft-ware by working team.
	D2. Manage the time efficiently.	d-2 Balance between computer facilities resources and programming time.

Week	Contents	ILOs covered by
No.		this topic
1	- Types of inventories and its function.	a3 &a2
2	- Inventory control – Techniques of Inventory control.	a5 &a2
3	– ABC Inventory analysis – Inventory Valuation.	b7&a5
4	- Basic Inventory models – Economic Order Quantity (EOQ)	c3&b2
5	- Basic Inventory models – Economic Production Quantity (EPQ)	c4
6	- Lot sizing Techniques	22
	- Characteristics of Net Requirement Demand.	05
7	- Lot sizing Procedure – Buffering Concepts.	c4&d3
8	- Material Requirement Planning (MRP) – Objective of MRP.	a1 &a5
9	- MRP input – Variable and Random Demand Models.	a1 &a3
10	- Just In Time Production (JIT)	a5 &c3
11	- Lean Production – Tools of Lean Production.	b2&a17
12	- Probabilistic inventory models and safety stock.	c4&b7
13	- Theory Of Constraints (TOC).	c3&d7
14	- Types of constraints (Physical – Market – Policy)	c3&d3
15	- Local Performance Measures.	o4 8 d7
	- The Production Decision.	C4&07

B. 6. <u>Teaching and Learning Methods</u>:

Course Inter learning outo (ILOs)	nded comes	Lecture	Presentation and Movies	Discussion	Tutorial	Problem solving	Brain storming	Projects	Site visits	Self learning	Cooperative	Discovering	Modelling	Playing
Knowledge &	a1	X		X		X								
understanding	a3	X		X		X								
	a5	X		X		X								
Intellectual	b2	X		X		X								
Skills	b7	X		X		X								
Professional	c2	X		X		X								
Skills	c7	X		X		X								
General Skills	d3		X							X	X			
	d7		X							Х	X			

B.7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1,a3,a5, b2,b7, c36,c4	a1,a3,a5, b2,b7, c36,c4

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

- Essential books (text books):

- Recommended books

- 1- S.Anil Kumar N. Suresh, Operations Management, New Age International Limited, 2009.
- 2- Joseph, G.Monks, Theory and Problems of Operations Management, McGraw-Hill, 2nd Edition, 2004

Periodicals, Web sites, Course notes, etc: 1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms 1. A lecture room with LCD or show

Course coordinator

Dr. Mohamed Hesham Belal

Head of Dept.

Prof. Taha El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval:

Production planning and control

PRE 626

Production Engineering and Mechanical Design

21 / 3 / 2012

A-COURSE IDENTIFICATION AND INFORMATION:

No.	Item	Specification		
1	Credit hours	<u>3cr-hrs</u>		
2	Exam. Hours	<u>3 hrs</u>		
3	Contact Hours	Lecture: 3 hrs/week Lab: -0 hrs/week		
3	Program (s) in which the course is	Production Engineering and Mechanical Design		
	offered.			
	(If general elective available in many programs			
	indicate this rather than list programs.)			
4	Level at which this course is offered.	Master in Engineering		
5	Pre-requisites course.	None		
6	Pre-requisites by Topic	None		
7	Coordinator	Dr. Ahmed Mousa Abo elenin		
8	External Evaluator(s)	Prof.		

B- <u>PROFESSIONAL INFORMATION</u>:

B.1. Description as in Post Graduate Studies Bulletin:

Types of planning activities - Aggregate production planning - Master production scheduling (MPS) - Capacity planning - Capacity planning models - JIT production system - input/output analysis.

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

The objectives of this course are to provide the Student, upon completing the Production Engineering Programme, with the basic knowledge and skills of how to control or management of production systems to ensure that production operations and actual performance occur according to planned operations and performance. This course will also provide students with the ability to make the. To make the product using the best and cheapest methods.

This course will also provide students with the required skills of identifying, formulating and solving fundamental engineering problems.

Dier Retuiteniship een een nie een se und nie programe						
	National Academic Reference Standard(NARS)					
Field	Knowledge &	Intellectual	Professional	Companel Shrilla		
	Understanding	Skills	Skills	General Skills		
Programme Academic						
Standards that the course	a1,a3,a5	b2,b7	c3,c4	d3,d7		
contribute in achieving						

B.3. Relationship between the course and the programe

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	a1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies.	a1-1) Recognize the production planning and it's function
Knowledge& Understanding	a3. Know the scientific developments in the production engineering.	a3-1) Identify the different types of production
	a5. Know quality basics for working in the production engineering field.	a5-1) Select the techniques for absorbing fluctuations in demand
Intellectual skills	b2. Produce solutions to problems through the application of specific production engineering discipline knowledge based on limited and possible information.	b2-1) Solve the technological forecasting problems.
	b7. Take the suitable decision for different professional situations.	b7-1) Take the suitable decision for panning process
	c3. Evaluate the available methods and tools in the production engineering field.	c3-1) Evaluate the aggregate production planning
Professional skills	c4. Define, plan, analyze, and solve the engineering problems to reach conclusions and compare the results with others.	c-4 Solve the capacity planning models
General skills	D2. Evaluate him-self and determine his personal education needs.	D2-1) Judge the created soft-ware by working team.

Week	Contents	ILOs covered by this topic
No.		
1	- Types of planning activates	a1-1,a3-1,a5-1, ,b7-1, c3-1,c4-1,
2	- factors affecting ppc	a1-1,a3-1,a5-1, b2-1,b7-1,d7-1
3	– function of ppc	a1-1,a5-1,b7-1, c3-1,c4-1, d3-1,d7-1
4	- forecasting techniques	a1-1,a3-1,a5-1, b2-1,b7-1, ,d2-1
5	- process planning	a1-1,a3-1,a5-1, c3-1,c4-1, d3-1,d2-1
6-8	- Aggregate production planning	,b7-1, c3-1,c4-1, d2-1
9-11	- scheduling and control of production	,b7-1, c3-1,c4-1,d2-1
12	- capacity planning models	a1-1,a3-1,a5-1, b2-1c4-1,d2-1
13	- JIT production system input / output	a1-1,a3-1, c3-1,c4-1, d3-1,d2-1
14	- Scheduling and computer	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1,d2-
		1
15	- Control of production	a1-1,a3-1,a5-1, b2-1,b7-1, d2-1

B. 6. *Teaching and Learning Methods:*

No.	Teaching and Learning	To Assess Course	To Assess (ARSEP) Outcomes
	Methods	ILOs Item No.	No.
1	Assignments and Exercises	a1-1,a3-1,a5-1, b2-1,b7- 1, c3-1,c4-1, d2-1	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4- 1, d2-1

B.7. Assessments:

Student assessment methods:

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a1-1,a3-1,a5-1, b2-1,b7-1, c3-1,c4-1, d2-1	a1-1,a3-1,a5-1, b2-1,b7-1, c3- 1,c4-1, d2-1

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

- Essential books (text books):

- Recommended books

- 1- N. Gaither Production and Operation Management, 6th ed.Fort Worth,Tx: The Dry den Press 2009.
- 2- W.J. Stevenson, Production and Operation Management, 5th .ed.Chicago : Richard D.Irwin, 2007.

Periodicals, Web sites, Course notes, etc:

1.

B. 9. Facilities Required for Teaching and Learning:

Indicate requirements for the course including size of classrooms 1. A lecture room with LCD or show

Course coordinator

Dr. Ahmed Mousa Abo-Elenin

Head of Dept.

Prof. Taha Ali El-Taweel

Date-- 19 March 2012

Course Title: Course Code: Department Offering the Course: Last Date of Approval: Project Management

PRE 627

Production Engineering and Mechanical Design

2012

A-COURSE IDENTIFICATION AND INFORMATION:

No	Item	Speci	fication	
· 1	Credit hours	3cr-hrs		
2	Exam. Hours	3	$\frac{3 \text{ hrs}}{3}$	
3	Contact Hours	Lecture: 3 hrs/week	Lab: - hrs/week	
3	Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs.)	Production Enginee Design	ring and Mechanical	
4	Level at which this course is offered.	Μ	l. Sc.	
5	Pre-requisites course.	N	lone	
6	Pre-requisites by Topic	None		
7	Coordinator	Dr. Omayma Nada		
8	External Evaluator(s)			

B- PROFESSIONAL INFORMATION:

B.1. Description as in Post Graduate Studies Bulletin:

Defining a project - determining the project activities - planning projects through network analysis -CPM and PERT techniques - time-cost tradeoff - project budgeting - project management under limited resources

Course Subject Area:

Math. and	Basic Eng.	Applied Eng.	Computer application	Projects and	Total
Basic Sciences	Science	And Design	and ICT	practice	
10%	30%	30%	20%	10%	100%

B.2. Course Objectives:

This course is designed to provide students with the basic concepts and techniques associated with project management. This course introduces the critical path method (CPM) and the program evaluation and review technique (PERT) as two management science techniques developed to plan,

schedule, and control large, complex projects with many activities. A strong emphasis will be given also to decisions related to time-cost trade-offs and project budgeting. In addition, the student would be qualified with basics of some software packages for project management.

B.3. Relationship between the course and the programe

	Nation	nal Academic Reference Standard(NARS)		
Field	Knowledge &	Intellectual	Professional	Conorol Skille
	Understanding	Skills	Skills	General Skills
Programme Academic				
Standards that the course	A1, A2	B1, B5, B7	C1, C2	D2
contribute in achieving				

Field	Programme ILOs that the course contribute in achieving	Course ILOs
Knowledge & Understanding	 A1. Understand theory, basics and practices of mathematics, sciences and various production engineering technologies. A2. Know the exchangeable effect among the production engineering practices and 	 a1-1) Identify key decisions in project management a1-2) Recognize characteristics and life cycle of a project a1-3)Explain optimistic, most likely, and pessimistic time estimates as well expected activity time estimates. a2-1) Discuss the nature and importance of a Work Breakdown Structure (WBS) a2-2) Map (WBS) with the Organizational
	reflection on the environment. B1. Analyze and evaluate the data and use them to solve the production engineering problems.	Breakdown Structure b1-1) Formulate the crashing problem as a linear programming model b1-2) Decompose the project into smaller activities b1-3) Create the network model according to the
Intellectual skills	B5. Evaluate the risks in the design of specific production engineering system.	 b5-1) Estimate expected time required for activity completion. b5-2) Compute the critical path, the project completion time and its variance b5-3) Compute the probability of the project being completed by a specific time.
	B7. Take the suitable decision for different professional situations.	B7-1 Find the least expensive way to shorten the duration of a project to meet a target completion date.
Professional skills	C1. Use efficiently the available tools as computer programs and measuring instruments as well as building ideas in the laboratory or through simulation and apply production engineering	c1-1)Apply PERT/CPM techniques to case studies c1-2) Apply MS project management to develop (WBS) c1-3) Demonstrate capabilities in using Primavera software to manage projects

Field	Programme ILOs that the course contribute in achieving	Course ILOs
	techniques.	
	C2. Write and evaluate technical reports.	c2-1) Implement projects effectively and use appropriate follow-up methods.c2-2) Document results related to critical activities identified, project completion time, etc.
General skills	D2. Apply information technology tools related to specific production engineering discipline.	d2-1) Use some of the specialized software available in the market for scheduling and tracking project activities

Week	Contents	ILOs covered by this topic
No.		
1	Introduction to project management	a1-1
	The nature of projects – key decisions in project	
	management	
2	Project life cycle	a1-2
3	Work Breakdown Structure (WBS)	a2-1,a2-2, b1-2, c1-1, c1-2
4	Project Network Representation PERT/CPM	b1-2, b1-3, c1-1
5	Project scheduling with deterministic activity durations	b1-3, b5-1, c1-1
6	Computing Algorithm (forward/backward pass)	b5-1, b5-2, c1-1
7	Project scheduling with probabilistic activity durations	a1-3, b5-2, b5-3, c1-1
8	Probabilistic time estimates- determining path	a1-3, b1-3, b5-1, b5-2,
	probabilities	b5-3, c1-1
9	Uses of simulation in project scheduling	b5-1, b5-2
10	Time-cost trade-offs: Crashing	b1-1, b7-1
11	Project Budgeting & cost estimating	b7-1, c1-1
12	Using Linear Programming to Make Crashing Decisions	b1-1, b7-1
13	Project scheduling software (Microsoft Project)	c1-1, c1-2, d2-1
14	Project scheduling software (Primavera)	c1-1, c1-3, d2-1
15	Project monitoring & control	c2-1, c2-2

B. 6. <u>Teaching and Learning Methods</u>:

No.	Teaching and	To Assess Course ILOs Item No.	To Assess (ARSEP)
	Learning Methods		Outcomes No.
1	Lectures	a-1, a1-2, a1-3, a2-1, a2-2, b1-1, b1- 2, b1-3, b5-1, b5-2, b5-3, b7-1, c1-1, c1-2, c1-3, c2-1, c2-2, d2-1	A1, A2, B1, B5, B7, C1, C2,D2

B. 7. <u>Assessments:</u> <u>Student assessment methods:</u>

No.	Assessment methods	To Assess Course ILOs Item No.	To Assess (ARSEP) Outcomes No.
1	Written exam	a-1, a1-2, a1-3, a2-1, a2-2, b1-1, b1-2, b1-3, b5-1, b5-2, b5-3, b7-1, c1-1, c1-2, c1-3, c2-1, c2-2	A1, A2, B1, B5, B7, C1, C2

Weighting of assessments:

Mid-Term Examination	- %
Final-Term Examination	100 %
Oral Examination	- %
Practical Examination	- %
Semester Work	- %
Other Types of Assessment	- %
Total	100 %

B.8. List of References:

Essential books (text books):

Jack R. Meredith and Samuel J. Mantel, Project Management: A Managerial Approach, 7th edition, John Wiley & Sons Ltd, 2009.

Recommended books

William J. Stevenson, "Operations Management", 11th Ed., McGraw Hill, USA 2012

Periodicals, Web sites, Course notes, etc:

The Project Management Institute (PMI) <u>http://www.pmi.org/</u> Primavera Enterprise Project Portfolio Management <u>http://www.oracle.com/us/products/applications/primavera/overview/index.html</u>

B. 9. Facilities Required for Teaching and Learning:

- 1. A lecture room with the following facilities (Data show, screen, and laptop, white board and colored pens)
- 2. Computer lab with MS Project and Primavera software installed

Course coordinator Dr. Omayma Nada

Head of Dept. Prof. Taha El-Taweel

Date: / /