# MENOUFIA UNIVERSITY FACULTY OF ELECTRONIC ENG.

SUBJECT: Electric Circuit Theory (Part 2)
Dept. of Electronic and Communication Eng.

TIME: 1 HOUR

Nov. 2019

2<sup>nd</sup> YEAR

Mid Term Exam.

## NAME:

pur alle

A – If an applied voltage to a capacitive reactance of C = 5 UF is given by:

 $V(t) = 10 \text{ Sin } 314 \text{ t} + 15 \text{ Cos } 942 \text{ t} + 50 \text{ Sin}(1570 \text{ t} + 30^{\circ})$ Find and write the equation of the resultant current.

- B For the circuit shown in Fig.1, calculate the power in the load of 10  $\Omega$  using Thevenin theorem.
- C For the circuit shown in Fig.2, Determine the average power delivered by 500 of voltage source and also by dependent source.



## **Question** [Part 2]

A. Find the output voltage Vo in the network in Fig. (A1)



B. Find the impedance seen by the source in the circuit in Fig. (A2)



#### **MENOUFIA UNIVERSITY**

Menouf, Faculty of Electronic Eng. Department of Phys. & Eng. Math. Eng. Math 6, Med\_Term exam Second Year



جامعه البوقية كلية الهندسة الإلكترونية بمنوف قسم الفيزيقا والرياضيات الهندسية اختبار ريض (نصف الفصل)

الفرقة الثانية

الأحد ٣ نوفمبر ٢٠١٩

#### Answer four questions

1) Find the missing entry in the following table

| x | 0 | 1       | 2       | 3 | 4       | 5       |
|---|---|---------|---------|---|---------|---------|
| y | 0 | 2.71828 | 14.7781 |   | 218.393 | 742.066 |

2. a) Redraw the table in your answer paper and complete the table as the example which given in first row.

| Number             | Significant figures | No. of Significant figures |
|--------------------|---------------------|----------------------------|
| 37.89              | 3, 7, 8, 9          | 4                          |
| 35.800             |                     |                            |
| $3.50 \times 10^5$ |                     | r *                        |
| $60 \times 10^2$   |                     |                            |
| 45500              |                     |                            |

- 2. b) If we assume that  $\pi = \frac{22}{7}$  such that the exact decimal representation of  $\pi$  is 3.141592654 then find the value of  $\pi$  correctly rounded to 4 decimal places.
- 3) Find the least squares line approximating the data in the following Table

| i     | 1   | 2   | 3   | 4    | 5    |
|-------|-----|-----|-----|------|------|
| $x_i$ | 1   | 3   | 5   | 7    | 9    |
| $y_i$ | 1.3 | 4.2 | 7.0 | 10.1 | 13.0 |

- 4) Determine the Padé approximant [1/1] of the exponential function  $e^{-2x}$ .
- 5) Use data in the following table to evaluate f(0.6).

| $\boldsymbol{x}$ | 0 | 1     | 2     | 3     | 5     |
|------------------|---|-------|-------|-------|-------|
| y                | 0 | 2.824 | 8.588 | 16.24 | 32.94 |

C1/9 Prises

Faculty of Electronic Engineering Electrical Comm. Engineering Dept. 1<sup>st</sup> term- (2<sup>nd</sup> year)



Subject: Fields and Waves

Midterm Exam

Allowed Time: 1 Hour

Sec.:

Name:

Answer as much as you can

### [1] Question One:

- A) If  $\overline{D} = e^{-x} siny \, \widehat{a}_x$   $e^{-x} cosy \, \widehat{a}_y + 2z \, \widehat{a}_z$  (C/m²) at the point P located at the center of a volume element  $\Delta V$ . Find the charge enclosed if  $\Delta V = 2 \times 10^{-9}$  m³.
- B) Given the point A( x=2, y=3, z=-1) and B( r=4,  $\theta=250$ ,  $\Phi=1200$ ), Find
  - (1) The spherical co-ordinates of A (2) The Cartesian co-ordinates of B
  - (3) The distance from A to B.
- C) Potential is given by  $V = 2(x+1)^2 (y+2)^2 (z+3)^2 V$  in free space. At point P (2,1,4) calculate:
  - (1) The potential at point P,
- (2) electric field intensity E at point P,
- (3) volume charge density at P.
- D) In a field  $\overline{E}=-50y~\widehat{a}_x$   $50x~\widehat{a}_y+30~\widehat{a}_z$  V/m, calculate the amount of work done in moving 2  $\mu$ C charge from A(1,2,3) to B(2,4,1).