This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

ELECTIVE 2 OPTIMAL CONTROL SYSTEMS (ACE 326)

Lecture 1- Introduction to Optimization Theory Ref. 1: Chapters 1&2

Dr. Lamiaa M. Elshenawy

Email: <u>lamiaa.elshenawy@el-eng.menofia.edu.eg</u> <u>lamiaa.elshenawy@gmail.com</u> Website: <u>http://mu.menofia.edu.eg/Imyaa_alshnawy/StaffDetails/1/ar</u>

INTRODUCTION TO OPTIMIZATION THEORY OUTLINES

What Is Optimization?
Why Is Optimization?
How Is Optimization?

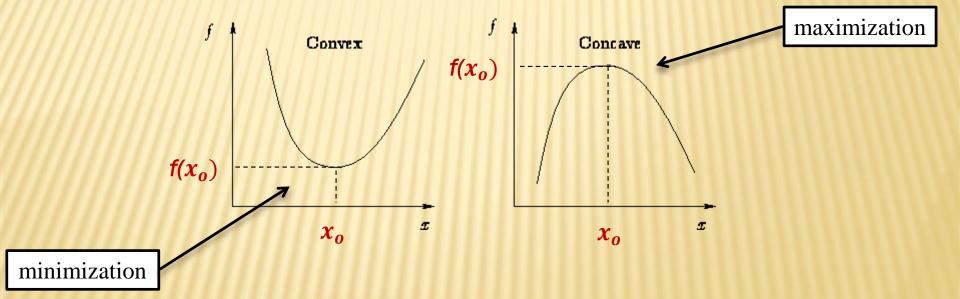
Optimum Design Problem Formulation

- Optimization=Best Design
- A branch of mathematics encompasses minimization and/or maximization
 - **Pythagoras** (569 BC to 475 BC) defined optimum over numbers, geometrical shapes, physics, astronomy
 - Bellman (1957) introduced optimality principle for dynamic programing problem
 - Russell C. Eberhart and James Kennedy (1995) Particle Swarm Optimization (PSO)

Pythagoras of Samos (569 BC to 475 BC): a Greek philosopher and mathematician Richard Ernest Bellman (1920 –1984): an American mathematician Russell C. Eberhart: an American electrical engineer James Kennedy : an American social psychologist

Mathematically:

Given: a function $f \in R$, there is an element $x_o | f(x_o) \le f(x) \forall x$ "minmization" or $f(x_o) \ge f(x) \forall x$ "maxmization"



Civil Engineer

Mechanical Engineer

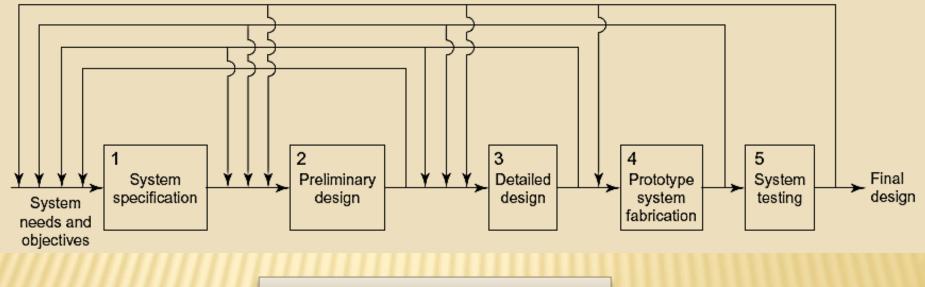
Chemical Engineer

Electronic Engineer

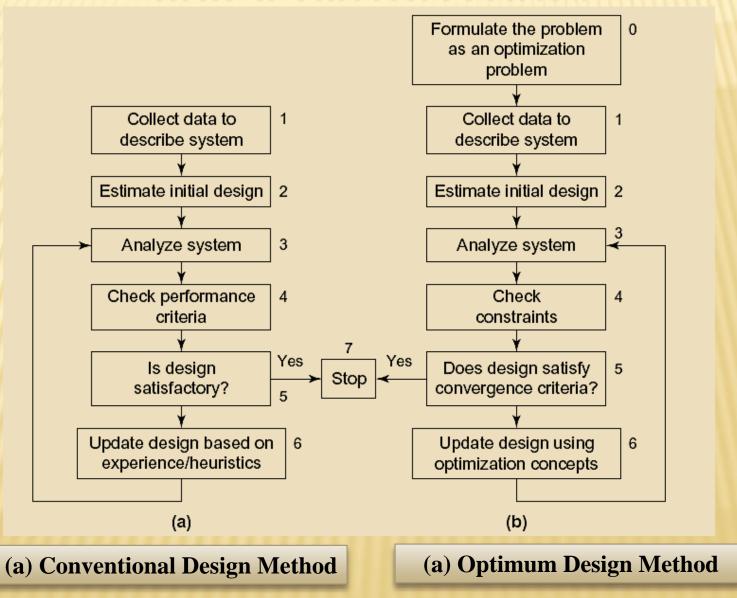
Competitive marketplace

Maximize the load a robot can lift

Design the smallest heat exchanger that accomplishes the desired heat transfer



System Evolution Model



Optimum Design Steps

Step1: Project/Problem Description

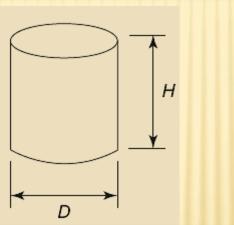
Step2: Data & Information Collection

Step3: Definition of Design Variables

Step4: Optimization Criteria

Step5: Formulation of Constraints

- Example 1: Design a can to hold at least 400 ml of liquid with the following requirements:
- Minimize its manufacturing cost
- Diameter should be no more than 8 cm and no less than 3.5 cm
- Height should be no more than 18 cm and no less than 8 cm
- P.S. Cost is directly related to the surface area of the sheet metal used



Step2: Data & Information Collection

 \checkmark Data are given in the problem statement

Step3: Definition of Design Variables

- $\checkmark D$ = diameter of the can, cm
- \checkmark *H* = height of the can, cm

Step4: Optimization Criteria

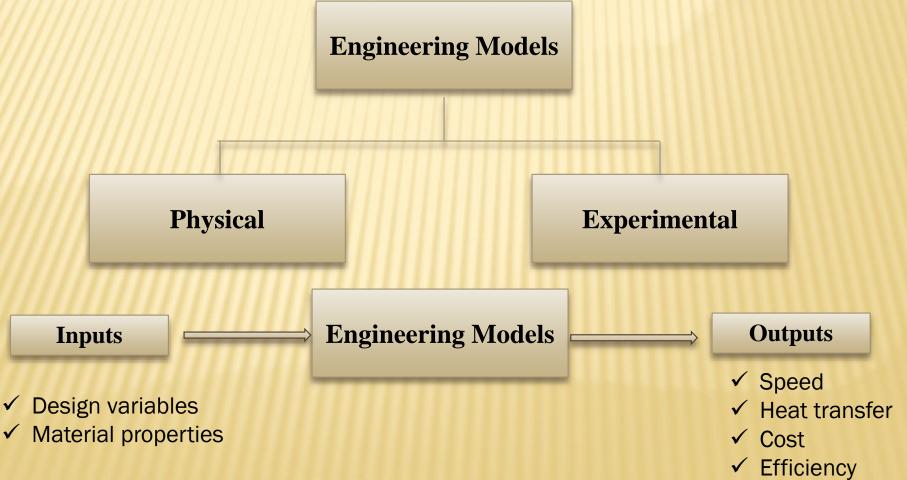
✓ The design objective is to minimize the cost; minimize the total surface area *S* $S = \pi DH + 2\left(\frac{\pi}{4}D^2\right), cm^2$

Step5: Formulation of Constraints

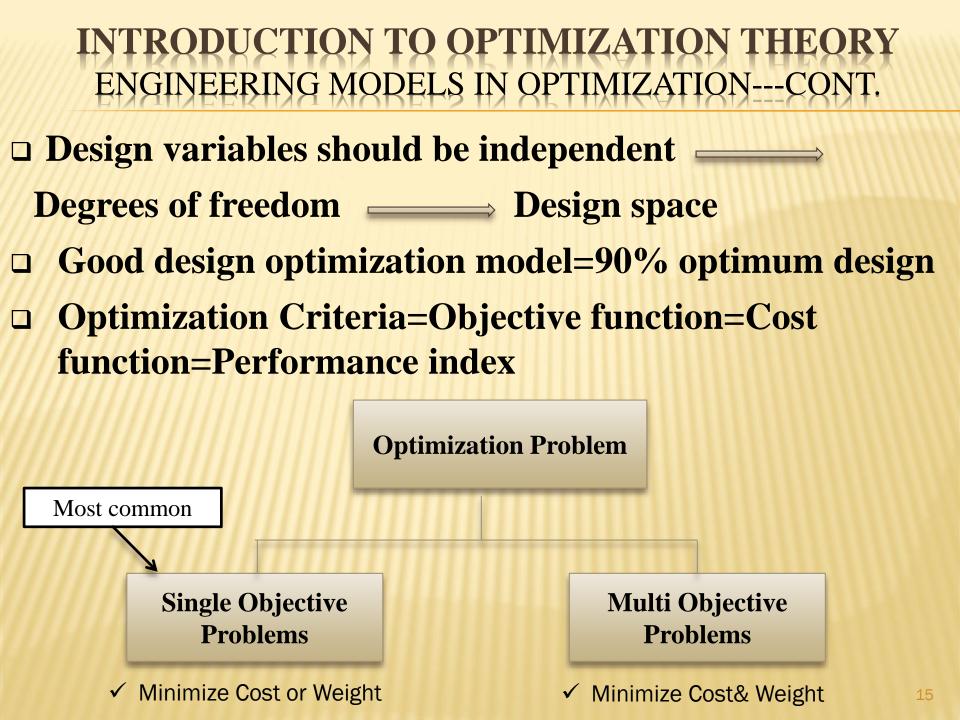
 $\left(\frac{\pi}{4}D^{2}\right)H \ge 400, cm^{3}$ $3.5 \le D \le 8, cm$ $8 \le H \le 18, cm$

INTRODUCTION TO OPTIMIZATION THEORY ENGINEERING MODELS IN OPTIMIZATION

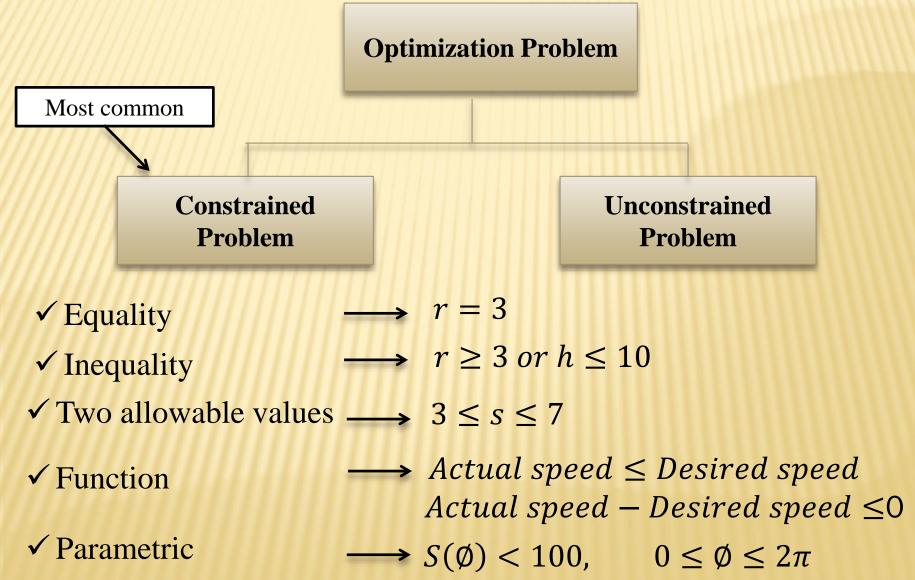
Proper Problem definition & formulation = 50 % of total effort needed to solve it



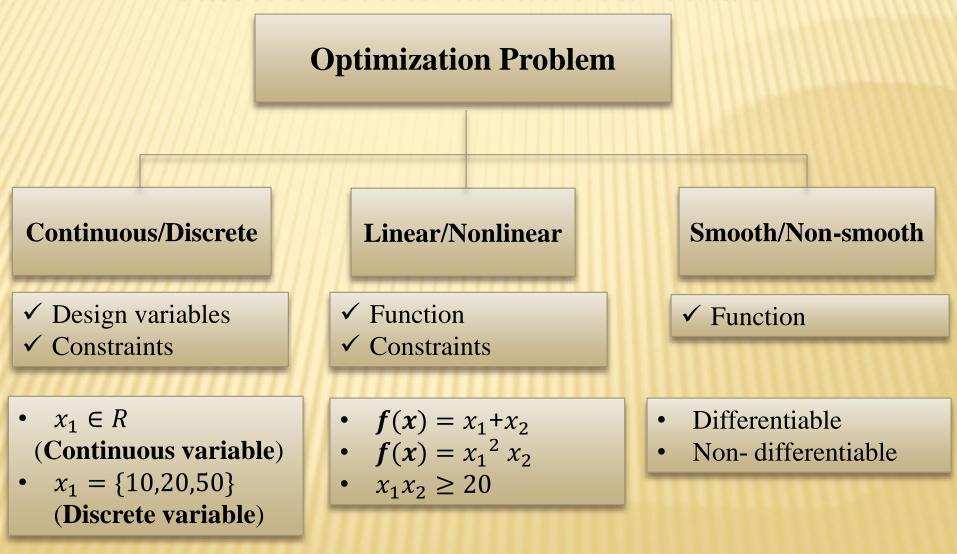
14



INTRODUCTION TO OPTIMIZATION THEORY CONSTRAINED/UNCONSTRAINED PROBLEMS



INTRODUCTION TO OPTIMIZATION THEORY OPTIMIZATION PROBLEMS TYPES



INTRODUCTION TO OPTIMIZATION THEORY OPTIMIZATION PROBLEMS TYPES---CONT.

Optimization Problem

Static/Dynamic

✓ Design variables✓ Constraints

•
$$S = \pi DH + 2\left(\frac{\pi}{4}D^2\right)$$

•
$$f(\mathbf{x}(t)) = x_1(t) + x_2(t)$$

• $x_1(t) \le 10$

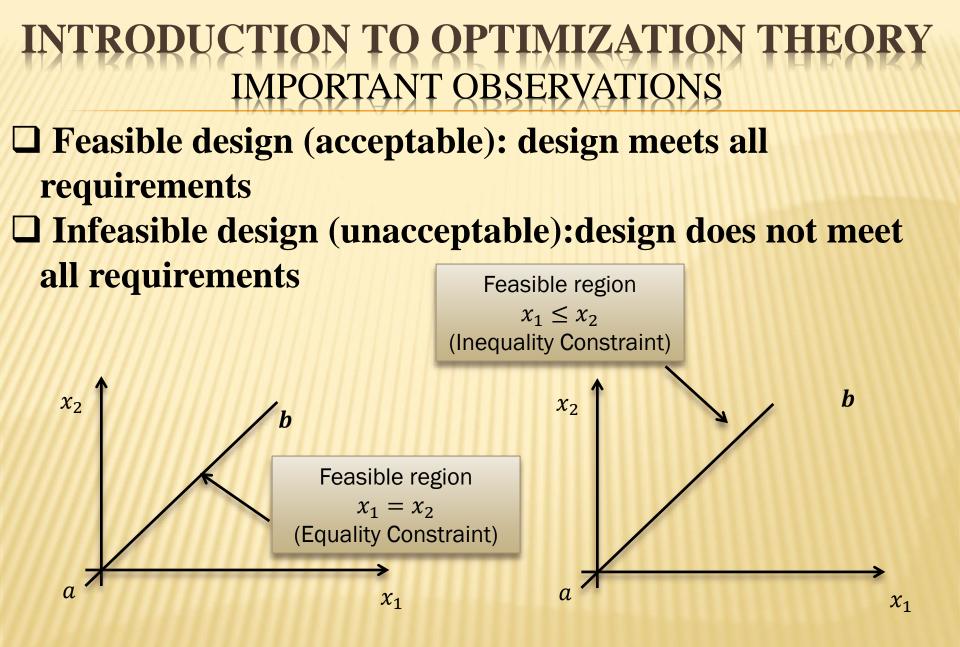
INTRODUCTION TO OPTIMIZATION THEORY STANDARD DESIGN OPTIMIZATION MODEL

□ Find a vector $\mathbf{x} = [x_1, x_2 \cdots, x_n]$ of design variables to minimize a cost function:

$$f(x) = f(x_i); i = 1:n$$

subject to:

m equality constraints: h_j(x) = h_j(x₁, x₂ ··· , x_n) = 0; j = 1:m
 p inequality constraints: g₁(x) = g₁(x₁, x₂ ··· , x_n) ≤ 0; l = 1:p



INTRODUCTION TO OPTIMIZATION THEORY IMPORTANT OBSERVATIONS

Let *S* is collection of design points satisfy all constraints

 $S = \{ \mathbf{x} \mid h_j(\mathbf{x}) = 0, j = 1: m; g_l(\mathbf{x}) \le 0; \ l = 1: p \}$

INTRODUCTION TO OPTIMIZATION THEORY IMPORTANT OBSERVATIONS

- □ Functions f(x), $h_j(x)$, and $g_l(x)$ must depend, explicitly or implicitly, on some of design variables.
- Functions do not depend on any variable have can be safely ignored
- Number of equality constraints must be less than, or at most equal to number of design variables

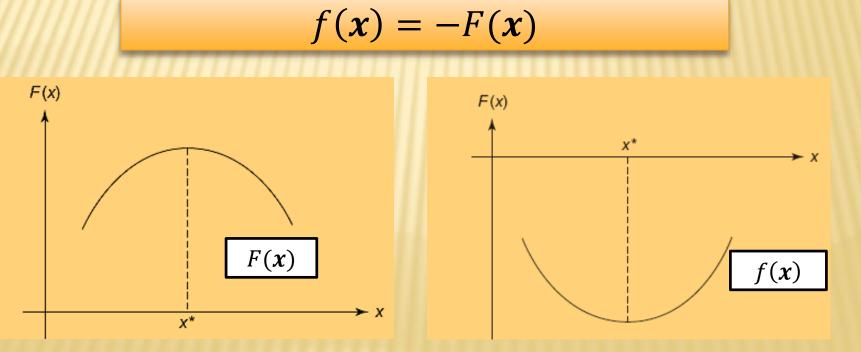
 $m \le n$ m > n(inconsistent-no solution) m = n(no optimization problem is necessary)

INTRODUCTION TO OPTIMIZATION THEORY IMPORTANT OBSERVATIONS---CONT.

□ No restriction on number of inequality constraints

$$p \le n \quad or \quad p \ge n$$

General design model treats only minimization problems, let F(x) is maximization function

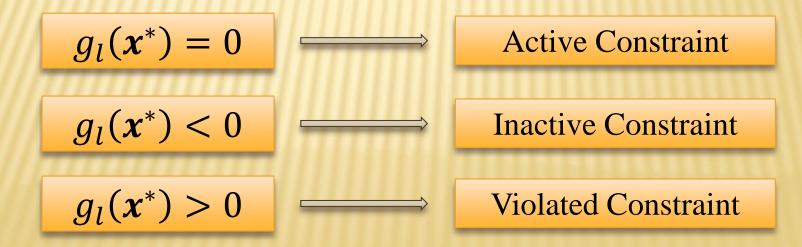


INTRODUCTION TO OPTIMIZATION THEORY IMPORTANT OBSERVATIONS---CONT.

□Standard design optimization model treats only "≤ type" inequality constraints, let $G_l(x) \ge 0$ is inequality constraint

$$g_l(\boldsymbol{x}) = -G_l(\boldsymbol{x}) \le 0$$

 \Box For inequality constraints $g_l(x) \leq 0, x^*$ is the design point



INTRODUCTION TO OPTIMIZATION THEORY IMPORTANT OBSERVATIONS---CONT.

 \Box For equality constraints $h_j(x) = 0, x^*$ is the design point

THANK YOU FOR YOUR ATTENTION