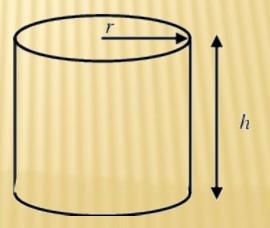
This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

ELECTIVE 2 OPTIMAL CONTROL SYSTEMS (ACE 326) Lecture 2- Introduction to Optimization Theory---Cont. Ref. 1: Chapters 1&2

Dr. Lamiaa M. Elshenawy

Email: <u>lamiaa.elshenawy@el-eng.menofia.edu.eg</u> <u>lamiaa.elshenawy@gmail.com</u> Website: <u>http://mu.menofia.edu.eg/Imyaa_alshnawy/StaffDetails/1/ar</u>


INTRODUCTION TO OPTIMIZATION THEORY OUTLINES

More Applications on Optimization Theory

Example 2: <u>Design a minimum-cost cylindrical tank</u> closed at both ends to contain a fixed volume of fluid V. The cost is found to depend directly on the area of sheet metal used.

Step1: Project/Problem Description

Step2: Data & Information Collection

✓ The engineering models of this system are:
A = 2πr² + 2πrh
V = πr²h
✓ c: is the currency cost per unit area

Step3: Definition of Design Variables

Step4: Optimization Criteria

✓ The design objective f(x) is to minimize the cost $f(r,h) = c(2\pi r^2 + 2\pi rh)$

Step5: Formulation of Constraints

 $V = \pi r^{2} h$ $r_{min} \leq r \leq r_{max}$ $h_{min} \leq h \leq h_{max}$

INTRODUCTION TO OPTIMIZATION THEORY HOW IS OPTIMIZATION?

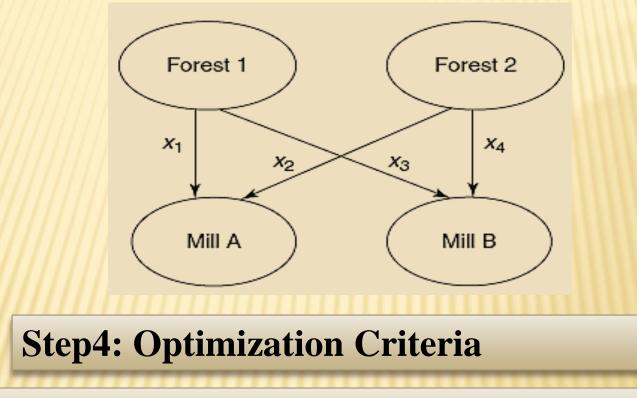
Summary

The optimization problem has the following features:

- 1. Single objective
- 2. Constrained (equality/inequality)
- 3. Continuous
- 4. Nonlinear
- 5. Static

Example 3: A company owns two sawmills and two forests. Each forest can yield up to 200 logs/day, and the cost to transport the logs is estimated at \$10/km/log. At least 300 logs are needed daily. <u>The</u> goal is to minimize the total daily cost of transporting the logs.

Step1: Project/Problem Description


Mill	Distance from forest 1	Distance from forest 2	Mill capacity per day
А	24 km	20.5 km	240 logs
В	17.2km	18 km	320 logs

Step2: Data & Information Collection

 \checkmark Data are given in the table

Step3: Definition of Design Variables

✓ x₁ = number of logs shipped from Forest 1 to Mill A
✓ x₂ = number of logs shipped from Forest 2 to Mill A
✓ x₃ = number of logs shipped from Forest 1 to Mill B
✓ x₄ = number of logs shipped from Forest 2 to Mill B

✓ The design objective f(x) is to minimize the cost $f(x) = 10(24) x_1 + 10(20.5) x_2 + 10(17.2) x_3 + 10(18) x_4$

Step5: Formulation of Constraints

 $\begin{array}{l} x_1 + x_3 \leq 200 \text{ (Forest1 production)} \\ x_2 + x_4 \leq 200 \text{ (Forest 2 production)} \\ x_1 + x_2 \leq 240 \text{ (Mill A capacity)} \\ x_3 + x_4 \leq 320 \text{ (Mill B capacity)} \\ x_1 + x_2 + x_3 + x_4 \geq 300 \text{ (request for logs)} \\ x_i \geq 0 \text{ ; i} = 1\text{ : }4 \end{array}$

INTRODUCTION TO OPTIMIZATION THEORY HOW IS OPTIMIZATION?

Summary

The optimization problem (transportation problems) has the following features:

- 1. Single objective
- 2. Constrained (inequality)
- 3. Discrete (integer numbers)
- 4. Linear
- 5. Static

THANK YOU FOR YOUR ATTENTION