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OQUTLINES

Local and global minima (maxima) for optimization
problems
Optimality conditions for unconstrained problems
Single variable optimization problem
Multi-variables optimization problem



OPTIMIZATION PROBLEM SOLUTION

Calculus-Based Solution

Unconstrained Constrained
Problem Problem

Equality Inequality




GLOBAL & LOCAL MINIMA/IMAXIMA

0 Global minimum: a function f(x) of n variables has
a global minimum at x* if f(x*) is less than or equal
to f(x) at any x in the feasible set §.

fx)<fx)VXxES

0 Local minimum: a function f(x) of n variables has a
local minimum at x* if f(x*) is less than or equal to
f(x) in a small neighborhood of x*in the feasible set S.

fxH)<f(x)vxeS

lx — x*|| < &, 6§ > 0is small value

0 Global & local maxima are defined in a similar manner.



GLOBAL & LOCAL MINIMA

E&F have active constraints
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EXISTENCE OFAMINIMUM

THEOREM 1

Weierstarss Theorem- Existence of a Global Minimum:
If f(x) is continuous on a nonempty feasible set S that is
closed and bounded, then f(x) has a global minimum in S

A set S is closed if there is no “< type” inequality constraints in
the formulation of the optimization problem.

A set S is bounded if for any point x € S, xTx < ¢, c is a finite
number.

Karl Wilhelm Weierstarss (1815 - 1897): German mathematician "father of
modern analysis”



EXISTENCE OF AMINIMUM

Example 10: Check the existence of a global minimum for
the following functions

a f(x)=-1/x definedonS ={x |0 < x <1}

b. f(x) = —1/xdefinedonS ={x |0 < x <1}

¢. f(x)=x?definedonS ={x|—10 < x <10}

d f(x)= (1/3) x%? + cosx definedon § = {x | —0 < x < 0}

Solution

a. The feasible set S is N0t Cl0SEd  u——)
Weierstarss Theorem is not satisfied, no global minimum

b. The function is not continuous at x=0 — )
Weierstarss Theorem is not satisfied, no global minimum




EXISTENCE OF AMINIMUM

c. The feasible set S is closed & the function is continuous at all x
e \\eierstarss Theorem is satisfied, global minimum

d. The feasible set S is not closed & unbounded — )
Weierstarss Theorem iIs not satisfied, no global minimum

f(x)
A

?-
67 Local minima: B and C COHClIlSiOH
4 Local maximum: A - -
) Welerstarss Theorem is
o not “if-and-only if”
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NECESSARY & SUFFICIENT CONDITIONS

Necessary Conditions
The conditions that must be satisfied at the optimum point

Sufficient Conditions
A candidate point satisfies the sufficient conditions is indeed
an optimum point




OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

Single-Variable

Taylor's Expansion
fx) =fx) + f(x)(x—x7)
Fof () (x — 2P+ R:
R: is small remainder term

If x* Is a local minimum; a change in the function for any move in
a small neighborhood of x* must be non-negative;

f(x) — f(x*) = Af = 0;
Af = f(x)(x —x°) +5 f'(x) (x — x)2+ R 2 0;
(x — x*) i1s very small; first term dominates other terms;

f'(x)(x—x*) = 0if
ff(x*)=0 (Necessary condition)



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

because f'(x*)=0
Af = f"(x")(x — x)%+ R = 0;
second term dominates other terms;
f'(x)(x—x)*= 0 if
f'(x)>0 (Sufficient condition)
f""(x*)=0 (Evaluate higher-order derivatives)

Example 11: Find the local minimum using

necessary/sufficient conditions:
a f(x)=x*—-4x+4

b f(x) =x3—x*—4x+4

¢ f(x)=x*



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

Solution Candidate Optimum Point

a f(x)=x*—4x+4 vy ['(x) =2x —4=0; x*'=2 —)

f'(x)=2>0Vx€S,;x"isindeed local minimum




OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

C.f(x) =x3—x? —4x+4 ) f'(x)=3x>—2x—4=0

x1"=1.535 (A), x,*= — 0.8685 (B) ey f''(x) = 6x — 2
f'(1.535) =7.211 >0, f""(— 0.8685) = —7.211 <0
x1" isindeed local minimum

Local maximum
point
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OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

C. f(x) = x4 — f,(X) = 4x3=0; x =0 —
f”(x) L 12x2,’f"(x*) =0 —f///(x) 11 24x,‘f”’(x*) =0
) (X)) =24, f""(x") >0V x € § n—)

x*isindeed local minimum



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

Multi-Variables Optimality Conditions

Taylor's Expansion
1. 9%f

_ * * af * af * *\ 2
f(xq,x2) = f(x1", x27) +a_x1(x1 —x1") +a_x2(x2 —x2") +E[ax12 (x1 —x1%)
% f

axlaxz

* * az * -
(1 —x1")(x2 — x27) +?2fz(xz — x2")?1+ R;

R: is small remainder term

+ 2



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

Taylor's Expansion
fO) = fO) + VT (x—x) +5 (x = x)TH(x - x) +R;

x=[x1 X3 x,]T, column vector;
_ 9L 9F | Of,r.
Vi = d0xq1 0x2 axn] ’
(gradient vector-first order partial derivative)

[ 2f Pf ]

0x2  Gméxy 818,

H = o°f = | Oy Ox3  Axpdxy
OXOX : : :

ox,0x1 Ox,0x2 Eﬁ,

(Hessian Matrix-second order partial derivative)



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

If x*is a local minimum; a change in the function for any move in
a small neighborhood of x*must be non-negative;
Vf(x*) = 0 (Necessary condition);
(x — x)TH(x — x*) > 0 (Sufficient condition)
If H is positive definite matrixV(x —x*) 0

Ludwig Otto Hesse ( 1811 —-1874): German mathematician



NECESSARY & SUFFICIENT CONDITIONS
MOTBIS ERBM

THEOREM 2

IfFx) =xTAx
is a quadratic Form function, it can be

1. Positive Definite: F(x) > 0V x # 0; A is called Positive Definite
Matrix

2. Positive Semidefinite: F(x) = 0V x # 0; A is called Positive
Semidefinite Matrix

3. Negative Definite: F(x) < 0V x # 0; A is called Negative Definite
Matrix

4, Negative Semidefinite: F(x) < 0V x # 0; A is called Negative
Semidefinite Matrix

5. Indefinite: F(x) > 0 for some values of x & F(x) < 0 for some

others ; A is called Indefinite Matrix

18



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

THEOREM 3

Eigenvalue Check for the Form of a
Matrix Let A; i=1 to n be the eigenvalues
of a symmetric # X n matrix A associated
with the quadratic form F(x) =x"Ax (since
A is symmetric, all eigenvalues are real).
The following results can be stated regard-
ing the quadratic form F(x) or the matrix A:

1. F(x) is positive definite if and only if all
eigenvalues of A are strictly positive; i.e.,
Ai>=>0,i=1 ton.

2. F(x) is positive semidefinite if and only if all
eigenvalues of A are non-negative; i.e.,
A = 0,i=1 to n (note that at least one

eigenvalue must be zero for it to be
called positive semidefinite).

. F(x) is negative definite if and only if all

eigenvalues of A are strictly negative;
Le, A< 0,i=1ton.

. F(x) is negative semidefinite if and only if all

eigenvalues of A are nonpositive; i.e.,
A = 0,i=1 to n (note that at least one
eigenvalue must be zero for it to be
called negative semidefinite).

. F(x) is indefinite if some A; < 0 and some

other A= 0.

19



OPTIMALITY CONDITIONS FOR

T A F S F ¥ W

UNCONSTRAINED PROBLEMS

THEOREM 4

Check for the Form of a Matrix Using
Principal Minors Let M, be the kth lead-
ing principal minor of the n X n symmetric
matrix A defined as the determinant of a
k X k submatrix obtained by deleting the last
(n — k) rows and columns of A (Section A.3).
Assume that no fwo consecutive principal min-
ors are zero. Then

1. A is positive definite if and only if all
Mk:}ﬂ; k:]. tD 1.

2. A is positive semidefinite if and only if
M, >0, k=1 tor, where r < n is the rank
of A (refer to Section A.4 for a definition
of the rank of a matrix).

3. Ais negative definite if and only if My <0
for k odd and My >0 for k even, k=1 ton.

4. A is negative semidefinite if and only if
M; < 0 for k odd and M; >0 for k even,
k=1tor <n.

5. A is indefinite if it does not satisfy any of
the preceding criteria.

20



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

J How determine matrix form?

» Quadratic Form
» Elgenvalues
» Principal Minors

Example 12: Determine the matrix form of the following
matrix:

2 0 O
A=10 4 0
O 0 3

Solution




OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

» Quadratic Form:
The quadratic form associated with the matrix is:

0 &)

= (2x1% + 4x,%+3x39) >0V x # 0
The matrix A4 is Positive Definite Matrix

FxX)=xTAx=[x; x, x3]T

» Elgenvalues:
For a given matrix A, the eigenvalue problem is defined as:
A x=Ax ;|(A — NI)[=0

2 0 O A0 O
0O 4 O0|/—-]10 AN 0]|=0
O 0 3 0O 0 A

)\1 —= 2,)\2 = 3,)\3 :4
Since all eigenvalues > 0
The matrix A4 is Positive Definite Matrix



OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

» Principal Minor:
2 00
0 4 0

0 0 3
The matrix A4 is Positive Definite Matrix

M1=2>O,M2=‘g ‘—8>0M3— =24 > 0

Example 13: Find the local minimum using necessary/sufficient
conditions:

f(X) = x12+2x1x2+2x22'2x1+x2+8
Solution

f(X) = X1 242X X0+ 2X5 2~ 2 X1+ Xy +8 nem—)

1
x| _[2x1 + 2x5 — 0 1 :
VIi=1o |7 2x1+4x2+1 =|o)i x17=25, x,* =-15

| dx7 |




OPTIMALITY CONDITIONS FOR
UNCONSTRAINED PROBLEMS

X "= [ 2E ] (Necessary condition)

—-1.5
- ﬁ ﬁzf -
ﬁx% 5I15x2 5 9
s an-| o o[22
5.1?351?1 %

Using one method to determine the matrix form, e.g., eigenvalues
) A = 0.7639 > 0,,A; =5.2361 >0 E—)

The matrix H is Positive Definite Matrix (Sufficient condition)
mmm) Y “isindeed local minimum
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