This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

ELECTIVE 2 OPTIMAL CONTROL SYSTEMS (ACE 326)

Lecture 4- Calculus-Based Optimization and Basic Concepts Ref. 1: Chapter 4

Dr. Lamiaa M. Elshenawy

Email: <u>lamiaa.elshenawy@el-eng.menofia.edu.eg</u> <u>lamiaa.elshenawy@gmail.com</u> Website: <u>http://mu.menofia.edu.eg/Imyaa_alshnawy/StaffDetails/1/ar</u>

OUTLINES

- Local and global minima (maxima) for optimization problems
- Optimality conditions for unconstrained problems
 - Single variable optimization problem
 - > Multi-variables optimization problem

OPTIMIZATION PROBLEM SOLUTION

Unconstrained Problem

Constrained Problem

Equality

Inequality

GLOBAL & LOCAL MINIMA/MAXIMA

 □ Global minimum: a function f(x) of n variables has a global minimum at x* if f(x*) is less than or equal to f(x) at any x in the feasible set S.

 $f(x^*) \le f(x) \ \forall \ x \in S$

Local minimum: a function f(x) of n variables has a local minimum at x* if f(x*) is less than or equal to f(x) in a small neighborhood of x*in the feasible set S.

 $f(x^*) \le f(x) \forall x \in S$ $\|x - x^*\| < \delta, \ \delta > 0 \text{ is small value}$

Global & local maxima are defined in a similar manner.

GLOBAL & LOCAL MINIMA

EXISTENCE OF A MINIMUM

THEOREM 1

Weierstarss Theorem- Existence of a Global Minimum: If f(x) is <u>continuous</u> on a nonempty feasible set *S* that is <u>closed and bounded</u>, then f(x) has a global minimum in *S*

A set *S* is <u>closed</u> if there is <u>no "< type"</u> inequality constraints in the formulation of the optimization problem.

A set *S* is **bounded** if for any point $x \in S$, $x^T x < c$, *c* is a finite number.

Karl Wilhelm Weierstarss (1815 – 1897): German mathematician "father of modern analysis"

EXISTENCE OF A MINIMUM

Example 10: Check the existence of a global minimum for the following functions

- a. f(x) = -1/x defined on $S = \{x \mid 0 < x \le 1\}$
- *b.* f(x) = -1/x defined on $S = \{x \mid 0 \le x \le 1\}$
- *c.* $f(x) = x^2$ defined on $S = \{x \mid -10 \le x \le 10\}$

d. $f(x) = (1/3) x^2 + \cos x$ defined on $S = \{x \mid -\infty < x < \infty\}$

Solution

- a. The feasible set *S* is <u>not closed</u> Weierstarss Theorem is <u>not satisfied</u>, <u>no global minimum</u>
- b. The function is <u>not continuous</u> at x=0
 Weierstarss Theorem is <u>not satisfied</u>, <u>no global minimum</u>

EXISTENCE OF A MINIMUM

c. The feasible set *S* is <u>closed &</u> the function is <u>continuous</u> at all *x* Weierstarss Theorem is <u>satisfied</u>, <u>global minimum</u>

d. The feasible set *S* is <u>not closed & unbounded</u> Weierstarss Theorem is <u>not satisfied</u>, <u>no global minimum</u>

NECESSARY & SUFFICIENT CONDITIONS

Necessary Conditions

The conditions that <u>must be satisfied</u> at the optimum point

Sufficient Conditions

A candidate point <u>satisfies the sufficient conditions</u> is indeed an optimum point

Single-Variable

Taylor's Expansion $f(x) = f(x^*) + f'(x^*)(x - x^*)$ $+ \frac{1}{2}f''(x^*)(x - x^*)^2 + R;$ *R*: is small remainder term

If x^* is a local minimum; a change in the function for any move in a small neighborhood of x^* must be non-negative; $f(x) - f(x^*) = \Delta f \ge 0$; $\Delta f = f'(x^*)(x - x^*) + \frac{1}{2}f''(x^*)(x - x^*)^2 + R \ge 0$; $(x - x^*)$ is very small; first term dominates other terms; $f'(x^*)(x - x^*) \ge 0$ if $f'(x^*) = 0$ (Necessary condition)

Brook Taylor (1685 – 1731): English mathematician

 $because f'(x^*) = 0$ $\Delta f = \frac{1}{2} f''(x^*)(x - x^*)^2 + R \ge 0;$ second term dominates other terms; $f''(x^*)(x - x^*)^2 \ge 0 \ if$ $f''(x^*) > 0 \qquad (Sufficient condition)$ $f''(x^*) = 0 \quad (Evaluate higher-order derivatives)$

Example 11: Find the local minimum using necessary/sufficient conditions:

a.
$$f(x) = x^2 - 4x + 4$$

b. $f(x) = x^3 - x^2 - 4x + 4$
c. $f(x) = x^4$

Solution

Candidate Optimum Point

a. $f(x) = x^2 - 4x + 4 \implies f'(x) = 2x - 4 = 0; x^* = 2$

 $f''(x) = 2 > 0 \forall x \in S; x^*$ is indeed local minimum

c.
$$f(x) = x^3 - x^2 - 4x + 4 \implies f'(x) = 3x^2 - 2x - 4 = 0$$

 $x_1^* = 1.535$ (A), $x_2^* = -0.8685$ (B) $\implies f''(x) = 6x - 2$
 $f''(1.535) = 7.211 > 0, f''(-0.8685) = -7.211 < 0$
 x_1^* is indeed local minimum

c. $f(x) = x^4$ $f'(x) = 4x^3 = 0; x^* = 0$ $f''(x) = 12x^2; f''(x^*) = 0 \longrightarrow f'''(x) = 24x; f'''(x^*) = 0$ $f''''(x) = 24; f''''(x^*) > 0 \ \forall \ x \in S$

x* is indeed local minimum

Multi-Variables Optimality Conditions

Taylor's Expansion $f(x_1, x_2) = f(x_1^*, x_2^*) + \frac{\partial f}{\partial x_1}(x_1 - x_1^*) + \frac{\partial f}{\partial x_2}(x_2 - x_2^*) + \frac{1}{2}[\frac{\partial^2 f}{\partial x_1^2}(x_1 - x_1^*)^2 + 2\frac{\partial^2 f}{\partial x_1 \partial x_2}(x_1 - x_1^*)(x_2 - x_2^*) + \frac{\partial^2 f}{\partial x_2^2}(x_2 - x_2^*)^2] + R;$ R: is small remainder term

Taylor's Expansion $f(\mathbf{x}) = f(\mathbf{x}^*) + \nabla f^T(\mathbf{x} - \mathbf{x}^*) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x} - \mathbf{x}^*) + R;$ $\mathbf{x} = [x_1 \ x_2 \cdots \ x_n]^T, \text{ column vector};$ $\nabla f = [\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \cdots \frac{\partial f}{\partial x_n}]^T;$

(gradient vector-first order partial derivative)

(Hessian Matrix-second order partial derivative)

If x*is a local minimum; a change in the function for any move in a small neighborhood of x*must be non-negative; $\nabla f(x^*) = 0$ (Necessary condition); $(x - x^*)^T H(x - x^*) > 0$ (Sufficient condition) If H is positive definite matrix $\forall (x - x^*) \neq 0$

Ludwig Otto Hesse (1811 – 1874): German mathematician

NECESSARY & SUFFICIENT CONDITIONS MATRIX FORM

THEOREM 2

 $If F(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$

is a quadratic Form function, it can be

- 1. Positive Definite: $F(x) > 0 \forall x \neq 0$; A is called Positive Definite Matrix
- 2. Positive Semidefinite: $F(x) \ge 0 \forall x \ne 0$; *A* is called Positive Semidefinite Matrix
- 3. Negative Definite: $F(x) < 0 \forall x \neq 0$; *A* is called Negative Definite Matrix
- 4. Negative Semidefinite: $F(x) \le 0 \forall x \ne 0$; *A* is called Negative Semidefinite Matrix
- 5. Indefinite: F(x) > 0 for some values of x & F(x) < 0 for some others; A is called Indefinite Matrix

THEOREM 3

Eigenvalue Check for the Form of a Matrix Let λ_i , i = 1 to n be the eigenvalues of a symmetric $n \times n$ matrix **A** associated with the quadratic form $F(\mathbf{x}) = \mathbf{x}^{T} \mathbf{A} \mathbf{x}$ (since **A** is symmetric, all eigenvalues are real). The following results can be stated regarding the quadratic form $F(\mathbf{x})$ or the matrix **A**:

- F(x) is positive definite if and only if all eigenvalues of A are strictly positive; i.e., λ_i > 0, i = 1 to n.
- F(x) is positive semidefinite if and only if all eigenvalues of A are non-negative; i.e., λ_i ≥ 0, i = 1 to n (note that at least one

eigenvalue must be zero for it to be called positive semidefinite).

- F(x) is negative definite if and only if all eigenvalues of A are strictly negative;
 i.e., λ_i < 0, i = 1 to n.
- F(x) is negative semidefinite if and only if all eigenvalues of A are nonpositive; i.e., λ_i ≤ 0, i = 1 to n (note that at least one eigenvalue must be zero for it to be called negative semidefinite).
- 5. $F(\mathbf{x})$ is *indefinite if* some $\lambda_i < 0$ and some other $\lambda_j > 0$.

THEOREM 4

Check for the Form of a Matrix Using Principal Minors Let M_k be the *k*th leading principal minor of the $n \times n$ symmetric matrix **A** defined as the determinant of a $k \times k$ submatrix obtained by deleting the last (n - k) rows and columns of **A** (Section A.3). Assume that *no two consecutive principal minors* are zero. Then

1. A is positive definite if and only if all $M_k > 0$, k = 1 to n.

- A is positive semidefinite if and only if *M_k* > 0, *k* = 1 to *r*, where *r* < *n* is the rank of A (refer to Section A.4 for a definition of the rank of a matrix).
- 3. A is negative definite if and only if $M_k < 0$ for *k* odd and $M_k > 0$ for *k* even, k = 1 to *n*.
- 4. A is negative semidefinite if and only if M_k < 0 for k odd and M_k > 0 for k even, k = 1 to r < n.
- 5. A is indefinite if it does not satisfy any of the preceding criteria.

U How determine matrix form?

Quadratic Form
 Eigenvalues
 Principal Minors

Example 12: Determine the matrix form of the following matrix:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

> Quadratic Form:

The quadratic form associated with the matrix is:

$$F(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x} = [x_{1} \quad x_{2} \quad x_{3}]^{T} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$
$$= (2x_{1}^{2} + 4x_{2}^{2} + 3x_{3}^{2}) > 0 \forall \mathbf{x} \neq 0$$
$$The matrix A is Positive Definite Matrix$$

Eigenvalues:

For a given matrix A, the eigenvalue problem is defined as:

$$A = \lambda x; |(A - \lambda I)| = 0$$

$$\begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{vmatrix} - \begin{vmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{vmatrix} = 0$$

$$\lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 4$$
Since all eigenvalues > 0
he matrix A is Positive Definite Matrix

Principal Minor:

$$M_{1} = 2 > 0, M_{2} = \begin{vmatrix} 2 & 0 \\ 0 & 4 \end{vmatrix} = 8 > 0, M_{3} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 24 > 0$$

The matrix 4 is Positive Definite Matrix

Example 13: Find the local minimum using necessary/sufficient conditions:

$$f(\mathbf{x}) = x_1^2 + 2x_1x_2 + 2x_2^2 - 2x_1 + x_2 + 8$$

Solution

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 + 2x_2 - 2 \\ 2x_1 + 4x_2 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; x_1^* = 2.5, x_2^* = -1.5$$

$$\mathbf{x}^* = \begin{bmatrix} 2.5\\ -1.5 \end{bmatrix}$$
 (Necessary condition)

$$H(2.5,-1.5) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$$

Using one method to determine the matrix form, e.g., eigenvalues $\lambda_1 = 0.7639 > 0$, $\lambda_2 = 5.2361 > 0$

The matrix <u>*H* is Positive Definite Matrix</u> (Sufficient condition) x * *is indeed local minimum*

THANK YOU FOR YOUR ATTENTION