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OUTLINES

 Historical Tour

 Modern Control Theory Vs. Conventional Control 

Theory

 Optimal Control System
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HISTORICAL TOUR

1. Johannes Bernoulli in 1699 posed the problem “finding the path of 
quickest descent between two points not in the same horizontal or 
vertical line”.

2. Leonhard Euler in 1750 solved the problem and is founder of 
calculus of variations in 1766.

3. Joseph-Louis Lagrange in 1755 found necessary condition “Euler -
Lagrange equation”.

4. Andrien Marie Legendre in 1786 found sufficient condition.

5. Carl Gustav Jacob Jacobi in 1836 came up with a more rigorous 
analysis of the sufficient conditions “Legendre-Jacobi condition”.
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Johannes Bernoulli (1667-1748):   a Swiss  mathematician

Leonhard Euler (1707 – 1783):   a Swiss  mathematician, physicist, astronomer and 

engineer

Andrien Marie Legendre (1752-1833): a French mathematician

Carl Gustav Jacob Jacobi (1804-1851): a German mathematician



HISTORICAL TOUR

6. William Rowan Hamilton in 1838 did some remarkable work on 

mechanics, motion of a particle in space “Hamilton-Jacobi equation”.

7. N. Wiener developed optimal control for weapon fire during World War II 

(1940-1945) .

8. L. S. Pontryagin in 1956 presented “maximum principle” based on work of 

Hamilton function.

9. R. Bellman in 1957 introduced “dynamic programming” to solve discrete 

time optimal control problems “Hamilton-Jacobi-Bellman approach”.

10. R. E. Kalman in 1960 provided linear quadratic regulator (LQR) and linear 

quadratic Gaussian (LQG) theory to design optimal feedback controls 

based on work of Pontryagin.
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William Rowan Hamilton (1788-1856) an Irish mathematician

N. Wiener (1894 – 1964) an American mathematician and philosopher

Richard Ernest Bellman(1920-1984) an American applied mathematician

Lev Semyonovich Pontryagin (1908 – 1988): a Soviet  mathematician

Rudolf Emil Kalman (1930-2016) a Hungarian-born American electrical engineer, 

mathematician, and inventor.



MODERN CONT. VS CONVENTIONAL CONT.

5

Conventional Control Modern Control

Frequency domain approach Time domain approach

Based on Laplace transforms 

theory

Based on state variable 

representation

Applicable to SISO, LTI systems 

only

Applicable to SISO/MIMO –

linear/nonlinear, time-invariant/ 

time-varying

Initial conditions =Zero Initial conditions ≠ Zero



MODERN CONT. VS CONVENTIONAL CONT.
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𝒀(𝒔)

𝑹(𝒔)
= 

𝑮(𝒔)𝑮𝒄(𝒔)

𝟏+𝑮(𝒔)𝑮𝒄(𝒔)𝑹(𝒔)

-

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

𝐾

+ 𝑢 𝑦

𝑥

𝑟

𝑟
𝐺(𝑠)

𝑆𝑒𝑛𝑠𝑜𝑟

+
𝐺𝑐(𝑠)

-

𝑒 𝑢 𝑦



IMPORTANT IDIOMS

Calculus of Variations (CoV): is the branch of 

mathematics concerning to find maxima and minima of 

functionals. 

Functionals: function of a function. Let 𝐽 is a functional 

dependent on a function 𝑓 𝑥 ; 𝐽 = 𝑉 𝑓 𝑥 ; 𝑉 are often 

expressed as definite integrals.

 Quadratic Form: is a special nonlinear function having 

only second-order terms (either the square of a variable or 

the product of two variables).

𝑓 𝑥 = σ𝑖=1
𝑛 σ𝑗=1

𝑛 𝑝𝑖𝑗 𝑥𝑖 𝑥𝑗 = 𝑥𝑇𝑃𝑥

𝑃 = [𝑝𝑖𝑗]𝑛×𝑛𝑚𝑎𝑡𝑟𝑖𝑥



OPTIMAL CONTROL SYSTEM

 Plants under steady state conditions

 Algebraic equations

 Calculus, Lagrange multipliers

Linear/nonlinear programming

 Plants under dynamic conditions

 Differential/difference equations

 Calculus of variations, Pontryagin 

principle, dynamic programming/search 

techniques

Optimal Control System

DynamicStatic



OPTIMAL CONTROL SYSTEM

Performance Index

Modern control 

design

Classical control 

design

 Time response (rise time, settling time, 

peak overshoot, steady state accuracy)

 Frequency response (gain/phase margin, 

bandwidth)

Find 𝑢∗

 Reach a target (follow trajectory)

 Extremize performance index



OPTIMAL CONTROL SYSTEM

ሶ𝒙 = 𝑨𝐱 + 𝑩𝒖
𝒚 = 𝑪𝐱 + 𝑫𝒖 𝑱 = න

𝒕𝟎

𝒕𝒇

[𝐱𝑻𝑸𝐱 + 𝒖𝑻𝑹𝒖]𝒅𝒕
𝑼− ≤ 𝒖(𝒕) ≤ 𝑼+

𝐱− ≤ 𝐱(𝒕) ≤ 𝐱+

Optimal Control System

ConstraintsPlant Performance Index

𝑹 is positive definite matrix

𝑸 is positive semidefinite matrix



OPTIMAL CONTROL SYSTEM

THEOREM 8

Euler-Lagrange Multiplier Theorem

Minimize cost function  𝑱 = 𝒕𝟎׬
𝒕𝒇[𝐱𝑻𝑸𝐱 + 𝒖𝑻𝑹𝒖]𝒅𝒕

subject to
ሶ𝐱 = 𝑨𝐱 + 𝑩𝒖

If 𝑽 𝐱, ሶ𝐱, 𝐮, 𝒕 = 𝐱𝑻𝑸𝐱 + 𝒖𝑻𝑹𝒖,
𝒉 𝐱, ሶ𝐱, 𝐮, 𝒕 = ሶ𝐱 − 𝑨𝐱 − 𝑩𝒖=0

𝑳 𝐱, ሶ𝐱, 𝒖, 𝒕 = 𝑽 𝐱, ሶ𝐱, 𝒖, 𝒕 + λ𝑻𝒉 𝐱, ሶ𝐱, 𝒖, 𝒕 and x∗, u∗is a local 
minimum, then 

𝝏𝑳

𝝏𝐱∗
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝐱∗
= 𝟎;

𝝏𝑳

𝝏𝒖∗
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒖∗
= 𝟎;

𝝏𝑳

𝝏λ∗
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶλ∗
= 𝟎 ; 𝐱 𝟎 𝐠𝐢𝐯𝐞𝐧

(Necessary condition)

Leonhard Euler (1707 – 1783):   a Swiss  mathematician, physicist, astronomer 

and engineer



Example 14: Minimize

Solution

OPTIMAL CONTROL SYSTEM

𝑱 = න

𝟎

𝟏

[𝒙𝟐 𝒕 + 𝒖𝟐(𝒕)]𝒅𝒕

Subject to plant equation ሶ𝒙 𝒕 = −𝒙 𝒕 + 𝒖(𝒕)

with boundary conditions 𝒙 𝟎 = 𝟏; 𝒙 𝟏 = 𝟎

𝝏𝑳

𝝏𝒙
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒙
= 𝟐𝒙 𝒕 + λ − ሶλ = 𝟎 (𝟏)

𝑳 = 𝒙𝟐 𝒕 + 𝒖𝟐 𝒕 + λ( ሶ𝒙 𝒕 + 𝒙 𝒕 − 𝒖 𝒕 )



OPTIMAL CONTROL SYSTEM

From (2) and (3), λ∗(t)=2u(t)=2 ሶ𝒙 𝒕 + 𝟐𝒙 𝒕

From (1), ሷ𝒙 𝒕 − 𝟐𝒙 𝒕 = 𝟎

𝒙∗ 𝒕 = 𝑪𝟏𝒆
−√𝟐𝒕 + 𝑪𝟐𝒆

√𝟐𝒕

𝒖∗ 𝒕 = 𝑪𝟏(𝟏 − √𝟐)𝒆− 𝟐𝒕 + 𝑪𝟐(𝟏 + √𝟐)𝒆√𝟐𝒕

𝑪𝟏 =
𝟏

𝟏 − 𝒆−𝟐 𝟐
, 𝑪𝟐 =

𝟏

𝟏 − 𝒆𝟐 𝟐

C𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
𝑜𝑝𝑡𝑖𝑚𝑢𝑚 design

𝝏𝑳

𝝏𝒖
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒖
= 𝟐𝒖 𝒕 − λ = 𝟎 (𝟐)

𝝏𝑳

𝝏λ
−

𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶλ
= ሶ𝒙 𝒕 + 𝒙 𝒕 − 𝒖 𝒕 = 𝟎 (𝟑)



OPTIMAL CONTROL SYSTEM

THEOREM 9

Pontryagin Maximum Principle

Minimize cost function  𝑱 = 𝒕𝟎׬
𝒕𝒇[𝐱𝑻𝑸𝐱 + 𝒖𝑻𝑹𝒖]𝒅𝒕

subject to
𝒇 = ሶ𝐱 = 𝑨𝐱 + 𝑩𝒖

If 𝑽 𝐱, 𝐮, 𝒕 = 𝐱𝑻𝑸𝐱 + 𝒖𝑻𝑹𝒖,
𝑯 𝐱, 𝒖, 𝒕 = 𝑽 𝐱, 𝒖, 𝒕 + λ𝑻 𝒇

and x∗, u∗is a local minimum, then 
𝝏𝑯

𝝏𝒙𝒊
∗ = − ሶλ𝒊;

𝝏𝑯

𝝏λ𝒊
∗ = ሶ𝒙𝒊;

𝝏𝑯

𝝏𝒖∗
= 𝟎; 𝐱 𝟎 𝐠𝐢𝐯𝐞𝐧

(Necessary condition)



Example 15: Minimize using maximum principle

Solution

OPTIMAL CONTROL SYSTEM

𝑱 =
𝟏

𝟐
න

𝟎

𝟐

𝒖𝟐(𝒕)𝒅𝒕

Subject to plant equation
ሶ𝒙𝟏 𝒕 = 𝒙𝟐 𝒕 ,

with boundary conditions 𝐱 𝟎 = [𝟏 𝟐]𝑻; 𝐱 𝟐 = [𝟏 𝟎]𝑻

𝝏𝑯

𝝏𝒖
= 𝒖 𝒕 + λ𝟐 𝒕 = 𝟎; 𝒖 𝒕 = −λ𝟐 𝒕 (𝟐)

𝑽 =
𝟏

𝟐
𝒖𝟐(𝒕), 𝒇𝟏 = 𝑥2 𝑡 , 𝒇𝟐 = 𝑢 𝑡

ሶ𝒙𝟐 𝒕 = 𝒖 𝒕

𝑯 =
𝟏

𝟐
𝒖𝟐 𝒕 + λ𝟏𝒇𝟏+ λ𝟐𝒇𝟐 =

𝟏

𝟐
𝒖𝟐 𝒕 + λ𝟏𝒙𝟐 𝒕 + λ𝟐𝒖 𝒕 (1)



OPTIMAL CONTROL SYSTEM

From (1) and (3), 𝐇 =
𝟏

𝟐
λ𝟐

𝟐 𝒕 + λ𝟏𝒙𝟐 𝒕 − λ𝟐
𝟐 𝒕

ሶ𝒙𝟏 𝒕 =
𝝏𝑯

𝝏λ𝟏
= 𝒙𝟐 𝒕 (𝟑)

ሶ𝒙𝟐 𝒕 =
𝝏𝑯

𝝏λ𝟐
= −λ𝟐 𝒕 (𝟒)

ሶλ𝟏 𝒕 = −
𝝏𝑯

𝝏𝒙𝟏
= 𝟎 (𝟓)

ሶλ𝟐 𝒕 = −
𝝏𝑯

𝝏𝒙𝟐
= −λ𝟏 𝒕 (𝟔)



OPTIMAL CONTROL SYSTEM

From (5) and (6) λ𝟏 𝒕 = 𝑪𝟏, λ𝟐 𝒕 = −𝑪𝟏𝒕 + 𝑪𝟐

𝒙𝟏
∗ 𝒕 =

𝟏

𝟐
𝒕𝟑 − 𝟐𝒕𝟐 + 𝟐𝒕 + 𝟏

𝒙𝟐
∗ 𝒕 =

𝟑

𝟐
𝒕𝟐 − 𝟒𝒕 + 𝟐

λ𝟏
∗ 𝒕 = 𝟑, λ𝟐

∗ = −𝟑𝒕 + 𝟒
𝒖∗ 𝒕 = 𝟑𝒕 − 𝟒

C𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
𝑜𝑝𝑡𝑖𝑚𝑢𝑚 design

𝒙𝟐 𝒕 =
𝑪𝟏
𝟐
𝒕𝟐 − 𝑪𝟐𝒕 + 𝑪𝟑

𝒙𝟏 𝒕 =
𝑪𝟏
𝟔
𝒕𝟑 −

𝑪𝟐
𝟐
𝒕𝟐 + 𝑪𝟑𝒕 + 𝑪𝟒

𝑭𝒓𝒐𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔
𝑪𝟒=1, 𝑪𝟑=2, 𝑪𝟐=4  and 𝑪𝟏=3
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OPTIMAL CONTROL SYSTEM



Thank you for your 
attention


