This file has been cleaned of potential threats.

To view the reconstructed contents, please SCROLL DOWN to next page.

ELECTIVE 2 OPTIMAL CONTROL SYSTEMS (ACE 326)

Lecture 6- Optimal Control Systems Ref. 2: Chapters 1\&2

Dr. Lamiaa M. Elshenawy

Email: lamiaa.elshenawy@el-eng.menofia.edu.eg lamiaa.elshenawy@gmail.com
Website: http://mu.menofia.edu.eg/Imyaa alshnawy/StaffDetails/1/ar

OUTLINES

- Historical Tour
- Modern Control Theory Vs. Conventional Control Theory
- Optimal Control System

HISTORICAL TOUR

1. Johannes Bernoulli in $\underline{1699}$ posed the problem "finding the path of quickest descent between two points not in the same horizontal or vertical line".
2. Leonhard Euler in $\underline{1750}$ solved the problem and is founder of calculus of variations in 1766.
3. Joseph-Louis Lagrange in $\underline{1755}$ found necessary condition "Euler Lagrange equation".
4. Andrien Marie Legendre in 1786 found sufficient condition.
5. Carl Gustav Jacob Jacobi in 1836 came up with a more rigorous analysis of the sufficient conditions "Legendre-Jacobi condition".

Johannes Bernoulli (1667-1748): a Swiss mathematician
Leonhard Euler (1707-1783): a Swiss mathematician, physicist, astronomer and engineer
Andrien Marie Legendre (1752-1833): a French mathematician Carl Gustav Jacob Jacobi (1804-1851): a German mathematician

HISTORICAL TOUR

6. William Rowan Hamilton in 1838 did some remarkable work on mechanics, motion of a particle in space "Hamilton-Jacobi equation".
7. N. Wiener developed optimal control for weapon fire during World War II (1940-1945).
8. L. S. Pontryagin in $\underline{1956}$ presented "maximum principle "based on work of Hamilton function.
9. R. Bellman in $\underline{1957}$ introduced "dynamic programming "to solve discrete time optimal control problems "Hamilton-Jacobi-Bellman approach".
10. R. E. Kalman in $\underline{1960}$ provided linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) theory to design optimal feedback controls based on work of Pontryagin.

William Rowan Hamilton (1788-1856) an Irish mathematician
N. Wiener (1894-1964) an American mathematician and philosopher Richard Ernest Bellman(1920-1984) an American applied mathematician
Lev Semyonovich Pontryagin (1908-1988): a Soviet mathematician Rudolf Emil Kalman (1930-2016) a Hungarian-born American electrical engineer, mathematician, and inventor.

MODERN CONT. YS CONYENTIONAL CONT.

Conventional Control

Frequency domain approach

Based on Laplace transforms theory

Modern Control

Time domain approach

Based on state variable representation

Applicable to SISO, LTI systems only

Applicable to SISO/MIMO linear/nonlinear, time-invariant/ time-varying
Initial conditions \neq Zero

MODERN CONT. YS CONYENTIONAL CONT.

IMPORTANT IDIOMS

\square Calculus of Variations (CoV): is the branch of
mathematics concerning to find maxima and minima of functionals.
\square Functionals: function of a function. Let J is a functional dependent on a function $f(x) ; J=V(f(x)) ; V$ are often expressed as definite integrals.
\square Quadratic Form: is a special nonlinear function having only second-order terms (either the square of a variable or the product of two variables).

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} x_{i} x_{j}=x^{T} P x \\
P=\left[p_{i j}\right]_{n \times n} \text { matrix }
\end{gathered}
$$

OPTIMAL CONTROLSYSTEM

Optimal Control System

Static

\checkmark Plants under steady state conditions
\checkmark Algebraic equations
\checkmark Calculus, Lagrange multipliers
Linear/nonlinear programming

Dynamic

\checkmark Plants under dynamic conditions
\checkmark Differential/difference equations
\checkmark Calculus of variations, Pontryagin principle, dynamic programming/search techniques

OPTIMAL CONTROLSYSTEM

Performance Index

Classical control design

\checkmark Time response (rise time, settling time, peak overshoot, steady state accuracy)
\checkmark Frequency response (gain/phase margin, bandwidth)

Modern control design

Find u^{*}
\checkmark Reach a target (follow trajectory)
\checkmark Extremize performance index

OPTIMAL CONTROLSYSTEM

OPTIMAL CONTROL SYSTEM

THEOREM 8

Euler-Lagrange Multiplier Theorem
Minimize cost function $J=\int_{t_{0}}^{t_{f}}\left[\mathrm{x}^{T} Q \mathrm{x}+\boldsymbol{u}^{T} R u\right] d t$ subject to

$$
\begin{gathered}
\dot{\mathbf{x}}=A \mathbf{x}+B u \\
\text { If } V(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t)=\mathbf{x}^{T} Q \mathbf{Q}+u^{T} R u, \\
h(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t)=\dot{\mathrm{x}}-A \mathbf{x}-B u=0 \\
L(\mathrm{x}, \dot{\mathrm{x}}, u, t)=\boldsymbol{V}(\mathbf{x}, \dot{\mathbf{x}}, u, t)+\lambda^{T} h(\mathrm{x}, \dot{\mathrm{x}}, u, t) \text { and } \mathrm{x}^{*}, u^{*} \text { is a local } \\
\text { minimum, then } \\
\frac{\partial L}{\partial \mathbf{x}^{*}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\mathrm{x}}^{*}}=0 ; \frac{\partial L}{\partial u^{*}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{u}^{*}}=0 ; \frac{\partial L}{\partial \lambda^{*}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\lambda}^{*}}=0 ; \mathbf{x}(\mathbf{0}) \text { given } \\
\text { (Necessary condition) }
\end{gathered}
$$

Leonhard Euler (1707-1783): a Swiss mathematician, physicist, astronomer and engineer

OPTIMAL CONTROL SYSTEM

Example 14: Minimize

$$
J=\int_{0}^{1}\left[x^{2}(t)+u^{2}(t)\right] d t
$$

Subject to plant equation $\dot{x}(t)=-x(t)+u(t)$
with boundary conditions $\quad x(0)=1 ; x(1)=0$

Solution

$$
\begin{align*}
& L=x^{2}(t)+u^{2}(t)+\lambda(\dot{x}(t)+x(t)-u(t)) \\
& \frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=2 x(t)+\lambda-\dot{\lambda}=0 \tag{1}
\end{align*}
$$

OPTIMAL CONTROL SYSTEM

$$
\begin{align*}
& \frac{\partial L}{\partial u}-\frac{d}{d t} \frac{\partial L}{\partial \dot{u}}=2 u(t)-\lambda=0 \tag{2}\\
& \frac{\partial L}{\partial \lambda}-\frac{d}{d t} \frac{\partial L}{\partial \dot{\lambda}}=\dot{x}(t)+x(t)-u(t)=0 \tag{3}
\end{align*}
$$

From (2) and (3), $\lambda^{*}(t)=2 u(t)=2 \dot{x}(t)+2 x(t)$
From (1), $\ddot{x}(t)-2 x(t)=0$

$$
\begin{gathered}
x^{*}(t)=C_{1} e^{-\sqrt{2} t}+C_{2} e^{\sqrt{2} t} \\
u^{*}(t)=C_{1}(1-\sqrt{2}) e^{-\sqrt{2 t}}+C_{2}(1+\sqrt{2}) e^{\sqrt{2 t}} \\
C_{1}=\frac{1}{1-e^{-2 \sqrt{2}}}, C_{2}=\frac{1}{1-e^{2 \sqrt{2}}}
\end{gathered}
$$

OPTIMAL CONTROLSYSTEM

THEOREM 9

Pontryagin Maximum Principle

Minimize cost function $J=\int_{t_{0}}^{t_{f}}\left[\mathrm{x}^{T} Q \mathrm{x}+u^{T} R u\right] d t$ subject to

$$
\begin{gathered}
f=\dot{\mathbf{x}}=A \mathbf{x}+B u \\
\text { If } \boldsymbol{V}(\mathbf{x}, \mathbf{u}, \boldsymbol{t})=\mathbf{x}^{T} \boldsymbol{Q}+u^{T} R u, \\
H(\mathbf{x}, \boldsymbol{u}, \boldsymbol{t})=V(\mathbf{x}, \boldsymbol{u}, \boldsymbol{t})+\lambda^{T} \boldsymbol{f} \\
\text { and } \mathbf{x}^{*}, u^{*} \text { is a local minimum, then } \\
\frac{\partial H}{\partial x_{i}^{*}}=-\dot{\lambda}_{i} ; \frac{\partial H}{\partial \lambda_{i}^{*}}=\dot{x}_{i} ; \frac{\partial H}{\partial u^{*}}=\mathbf{0} ; \mathbf{x}(\mathbf{0}) \text { given } \\
\text { (Necessary condition) }
\end{gathered}
$$

OPTIMAL CONTROL SYSTEM

Example 15: Minimize using maximum principle

$$
J=\frac{1}{2} \int_{0}^{2} u^{2}(t) d t
$$

Subject to plant equation

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=u(t)
$$

with boundary conditions $x(0)=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T} ; x(2)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$

Solution

$$
\begin{align*}
& \boldsymbol{V}=\frac{1}{2} \boldsymbol{u}^{2}(\boldsymbol{t}), \boldsymbol{f}_{1}=x_{2}(t), \boldsymbol{f}_{2}=u(t) \\
& \boldsymbol{H}=\frac{1}{2} \boldsymbol{u}^{2}(\boldsymbol{t})+\lambda_{1} \boldsymbol{f}_{1}+\lambda_{2} \boldsymbol{f}_{2}=\frac{1}{2} \boldsymbol{u}^{2}(\boldsymbol{t})+\lambda_{1} \boldsymbol{x}_{2}(\boldsymbol{t})+\lambda_{2} \boldsymbol{u}(\boldsymbol{t}) \\
& \frac{\partial \boldsymbol{H}}{\boldsymbol{\partial u}}=\boldsymbol{u}(\boldsymbol{t})+\lambda_{2}(\boldsymbol{t})=\mathbf{0} ; \boldsymbol{u}(\boldsymbol{t})=-\lambda_{2}(\boldsymbol{t})
\end{align*}
$$

OPTIMAL CONTROLSYSTEM

From (1) and (3), $H=\frac{1}{2} \lambda_{2}{ }^{2}(t)+\lambda_{1} x_{2}(t)-\lambda_{2}{ }^{2}(t)$

$$
\begin{align*}
& \dot{x}_{1}(t)=\frac{\partial H}{\partial \lambda_{1}}=x_{2}(t) \tag{3}\\
& \dot{x}_{2}(t)=\frac{\partial H}{\partial \lambda_{2}}=-\lambda_{2}(t) \tag{4}\\
& \dot{\lambda_{1}}(t)=-\frac{\partial H}{\partial x_{1}}=0 \tag{5}\\
& \dot{\lambda_{2}}(t)=-\frac{\partial H}{\partial x_{2}}=-\lambda_{1}(t) \tag{6}
\end{align*}
$$

OPTIMAL CONTROL SYSTEM

From (5) and (6) $\lambda_{1}(t)=C_{1}, \lambda_{2}(t)=-C_{1} t+C_{2}$

$$
\begin{gathered}
x_{2}(t)=\frac{C_{1}}{2} t^{2}-C_{2} t+C_{3} \\
x_{1}(t)=\frac{C_{1}}{6} t^{3}-\frac{C_{2}}{2} t^{2}+C_{3} t+C_{4}
\end{gathered}
$$

From boundary conditions

Candidate optimum design

$$
C_{4}=1, C_{3}=2, C_{2}=4 \text { and } C_{1}=3
$$

$$
\begin{gathered}
x_{1}{ }^{*}(t)=\frac{1}{2} t^{3}-2 t^{2}+2 t+1 \\
x_{2}{ }^{*}(t)=\frac{3}{2} t^{2}-4 t+2 \\
\lambda_{1}{ }^{*}(t)=3, \lambda_{2}{ }^{*}=-3 t+4 \\
u^{*}(t)=3 t-4
\end{gathered}
$$

OPTIMAL CONTROL SYSTEM

THANK YOU FOR YOUR ATTENTION

