
1.7. FERMI DIRAC DISTRIBUTION FUNCTION

The energy band divided to energy states, electrons can
occupy some of these. According to Pauli statement that,
there are many states are unoccupied by electrons and no
two electrons has the same energy in the same atom at the
same time. Now, what determine the probability that a
given energy state occupies by electron? The accurate
number of electrons dN having a value of energy in a given
range of energy state E+ E at absolute temperature can be
expressed by FERMI as:

𝒅𝑵 =
𝑪 𝑬 𝒅𝑬

𝒆 ൗ𝑬−𝑬𝑭
𝑲𝑻 +𝟏

𝑬𝒒. 𝟏 . 𝟖
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Where the constant of proportionality C has the value:

𝑪 =
𝟒 𝝅 𝟐𝒎𝒆

ൗ𝟑 𝟐

𝒉𝟐
= 𝟔. 𝟐𝟖 𝒙𝟏𝟎𝟐𝟕 ൘

𝒆𝒍𝒄𝒕𝒓𝒐𝒏𝒔
𝒎 /𝒆𝑽 ൗ𝟑 𝟐

𝑬𝒒. 𝟏. 𝟗

Where, (h) is the Plank’s constant, and 
Ef is defined as the highest electronic energy at absolute
temperature.
At E = Ef, the probability of electron occupancy is 50%.
It is important to note that, at 0K all the charge carriers
frozen and lies in the lowest level of the energy gap.
In conduction band, there is large number of states has
small probability of occupation, there will be only a few
electrons in the conduction band.
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Function

In contrast, there a large
number of states in
valance band, most of
them occupied and the
probability of occupation
is unity, so there will be
only a few unoccupied
energy states in valance
band. The FERMI DIRAC
distribution function is
symmetrical around the
FERMI level, figure (1.18).



If the number of energy states in conduction valance band
are the same. In addition, if the number of electrons in
conduction and valance band are the same. Then FERMI
level must be located in middle of the energy gap in case of
intrinsic material. So in intrinsic material n = p and E = Ef and
is noted as Efi. In N-Type, the concentration of electrons in
conduction band is greater than concentration of electrons
in intrinsic material, concentration of holes in conduction
band is equal to concentration of holes in intrinsic material.
It follows that, in N-Type, FERMI function shifted upward in
the energy band picture.
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Figure 1.19 Fermi Dirac Distribution
Function in N & P-Type Materials

N-Type                                                         P-TypeIn contrast, in P-Type, FERMI
level and FERMI function will
both shifted downward in the
direction of valance band. The
FERMI level serves also as a
measure of electronic
occupancy in material, and is
equal to,

𝑬𝒇 =
𝟑 𝑵

𝟐 𝑪

ൗ𝟑 𝟐

= 𝟑. 𝟔𝟒 𝒙 𝟏𝟎−𝟏𝟗 𝑵 ൗ𝟑 𝟐 𝑬𝒒. 𝟏. 𝟏𝟎
Where N is the number of
valance electrons/m3.



1.7.1. FERMI LEVELS AND CARRIERS DENSITY 

The electrical properties of a material depend on
presence or absence of electrons in particular energy level.
FERMI statistics used to determine the distribution of
electrons in any particular energy level. The probability
f(E) can be determined by,

𝒇(𝑬) =
𝟏

𝟏 + 𝒆 ൗ𝑬−𝑬𝑭
𝑲𝑻

𝑬𝒒. 𝟏 . 𝟏𝟏

It should be noted that if E = Ef , then f(E) = 1/2, so that
there is 50% chance that an energy state is filled by
electron. Figure (1-20) shows the electrons occupancy as
function for temperature.
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The probability of occupancy increased as the temperature
increased and decreased as the temperature decreased. At
absolute zero, probability is zero that any level above FERMI
be filled, and probability is unity that any level below
FERMI will be filled. When we apply this distribution at RT
to intrinsic Si which has energy gap 1.1 eV, the energy
difference between the two energy states Ec- Ef = 0.55 eV, or
about 21 KT (KT = 0.026 eV), in this case E-Ef is so large
compared to KT, and Eq.1.11 becomes:

𝒇 𝑬 = 𝒆− ൗ𝑬− 𝑬𝑭
𝑲𝑻 𝑬𝒒. 𝟏. 𝟏𝟐
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𝟏 − 𝒇 𝑬

=
𝟏

𝟏 + 𝑒− ൗ𝐸𝐹− 𝐸
𝐾𝑇

𝑬𝒒. 𝟏 𝟏𝟑

Eq.1.13 simplified to:
𝟏 − 𝒇 𝑬

= 𝑒− ൗ𝐸𝐹− 𝐸
𝐾𝑇 𝑬𝒒. 𝟏 𝟏𝟒

Eq.1.12 and Eq. 1.14 are used to determine the density of
free electrons n and the density of free holes p in the
semiconductor material.
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If the density of states in which electrons or holes can 
occupy known, and the probability of occupancy known, 
the number of free carriers can have determined. 
Let N(E) is the number of states/eV/m3 of the crystal, then
the density of states in an energy range E1 to E2 is given by:

𝑺 = න
𝑬𝟏

𝑬𝟐

𝑵 𝑬 𝒅𝑬 𝑬𝒒. 𝟏. 𝟏𝟓

Number of electrons is the product of states and the
probability of occupancy, so:

𝒏 = න
𝑬𝑪𝑩

𝑬𝑪𝑻

𝒇 𝑬 𝑵 𝑬 𝒅𝑬 𝑬𝒒. 𝟏 𝟏𝟔



Gives: the density of free electrons (n)

𝒏 = 𝑵𝒄 𝒆
− ൘𝑬𝒄−𝑬𝒇

𝑲𝑻 𝑬𝒒. 𝟏. 𝟏𝟕
Where Nc is the effective density of states in the conduction band
and equal?

𝑵𝒄 =
𝟐𝒎𝒆 𝑲𝑻

𝒉𝟐

ൗ𝟑 𝟐
𝑬𝒒. 𝟏. 𝟏𝟖

In addition, the density of free holes p given by:

𝒑 = 𝑵𝒗 𝒆
− ൘𝑬𝒇−𝑬𝒗

𝑲𝑻 𝑬𝒒. 𝟏. 𝟏𝟗
Where Nv is the effective density of states in the valance band
and it is equal:

𝑵𝒗 =
𝟐𝒎𝒑 𝑲𝑻

𝒉𝟐

ൗ𝟑 𝟐

𝑬𝒒. 𝟏. 𝟐𝟎
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Where, Nc = Nv only, if the effective masses of electrons
and holes are equal, from Eq.1.17 and Eq.1.19, we can
calculate the concentration of equilibrium value of free
carriers np,

𝒏 𝒑 = 𝑵𝒄 𝑵𝒗 𝒆
− ൗ𝑬𝒄−𝑬𝒗

𝑲𝑻 =
𝑵𝒄 𝑵𝒗 𝒆

− ൗ𝑬𝑮
𝑲𝑻 𝑬𝒒. 𝟏. 𝟐𝟏

As the energy gap Eg decreases linearly with temperature,
so Eg = Ego - , and Eq.1.21 becomes:

𝒏 𝒑 =

𝟐. 𝟑𝟑 𝒙 𝟏𝟎𝟒𝟑
𝒎𝒆𝒎𝒑

𝒎𝟐

ൗ𝟑 𝟐
𝑻𝟑 𝒆− ൗ𝑬𝑮𝒐

𝑲𝑻 𝒆 ൗ𝜷 𝑲 𝑬𝒒. 𝟏. 𝟐𝟐

Where Ego is the energy gap at 0 K,  is the variation of Eg
with temperature. For Si, the equilibrium concentration of
intrinsic carriers given by:
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𝒏 𝒑 = 𝟏𝟓 𝒙 𝟏𝟎𝟒𝟒 𝑻𝟑 𝒆− ൗ𝟏.𝟐𝟏
𝑲𝑻 𝑬𝒒. 𝟏. 𝟐𝟑

For intrinsic material where n = p , so the intrinsic
concentration is :

𝒏𝒊
𝟐 = 𝒏 𝒑 𝑬𝒒. 𝟏. 𝟐𝟒

In addition, this known as electrical neutrality law.
Equations 1.17 and 1.19 for determine electrons and holes
concentrations can be applied to both intrinsic and extrinsic
materials, wherein intrinsic n = p. So:

𝑵𝒄 𝒆
− ൘𝑬𝒄−𝑬𝒇

𝑲𝑻 = 𝑵𝒗 𝒆−
൘𝑬𝒇−𝑬𝒗
𝑲𝑻 𝑬𝒒. 𝟏. 𝟐𝟓
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By taking the logarithm of both sides of the
equation above,

𝒍𝒏
𝑵𝒄

𝑵𝒗
=

𝑬𝒄+ 𝑬𝒗−𝟐𝑬𝒇

𝑲𝑻
From which;

𝑬𝒇

=
𝑬𝒄 + 𝑬𝒗

𝟐
−
𝑲𝑻

𝒒
𝒍𝒏

𝑵𝒄

𝑵𝒗
𝑬𝒒. 𝟏. 𝟐𝟔

If Nc = Nv at mp = mn, Eq.1,26 will be
simplified to:

𝑬𝒇 =
𝑬𝒄 + 𝑬𝒗

𝟐
𝑬𝒒. 𝟏. 𝟐𝟕



Solved Examples
Problem (18)

A silicon wafer contains 1016 cm-3 electrons. Calculate
the hole density and the position of the intrinsic
energy and the Fermi energy at 300 K. Draw the
corresponding band diagram to scale, indicating the
conduction and valence band edge, the intrinsic
energy level and the Fermi energy level. Use ni = 1010

cm-3.

Solution:

The hole density is obtained using the mass
action law:

𝒑 =
𝒏𝒊
𝟐

𝒏
=

𝟏𝟎𝟐𝟎

𝟏𝟎𝟏𝟔
= 𝟏𝟎𝟒 𝒄𝒎−𝟑

The position of the intrinsic energy relative
to the mid gap energy equals:

𝑬𝒊 −
𝑬𝒄 + 𝑬𝒗

𝟐
= −

𝟑

𝟒
𝑲𝑻 𝒍𝒏

𝒎𝒉
∗

𝒎𝒆
∗ =

𝟑

𝟒
𝒙 𝟎. 𝟎𝟐𝟓𝟖 𝒍𝒏

𝟎. 𝟖𝟏

𝟏. 𝟎𝟖
= 𝟓. 𝟓𝟖𝒎𝒆𝑽

The position of the Fermi energy relative to
the intrinsic energy equals:

𝑬𝑭 − 𝑬𝒊 = 𝑲𝑻 𝒍𝒏
𝑵𝒅

𝒏𝒊
= 𝟎. 𝟎𝟐𝟓𝟖 𝒍𝒏

𝟏𝟎𝟏𝟔

𝟏𝟎𝟏𝟎
= 𝟑𝟓𝟕𝒎𝒆𝑽

Example (19)

The electron density in silicon at room temperature
is twice the intrinsic density. Calculate the hole
density, the donor density and the Fermi energy
relative to the intrinsic energy. Repeat for n = 5 ni
and n = 10 ni. Also repeat for p = 2 ni, p = 5 ni and p
= 10 ni, calculating the electron and acceptor
density as well as the Fermi energy relative to the
intrinsic energy level.

Solution:

The hole density is obtained using the
mass action law: p = ni

2/n

The doping density obtained by requiring
charge neutrality Nd - Na = n - p

The Fermi energy obtained from: 

EF - Ei = kT ln(n/ni) Yielding:

14

n = 2 ni n = 5 ni n = 10 ni

p ni /2 ni /5 ni /10

Nd - Na 1.5 ni 4.8 ni 9.9 ni

EF - Ei kT ln(2) kT ln(5) kT ln(10)

p = 2 ni p = 5 ni p = 10 ni

n ni /2 ni /5 ni /10

Nd - Na -1.5 ni -4.8 ni -9.9 ni

EF - Ei - kT ln(2) - kT ln(5) - kT ln(10)



n-type                                         p-type
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EV

Figure 1-21 Energy Band Representation for 
Extrinsic Material (a) N-Type (b) P- Type
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1.8 EXTRINSIC MATERIALS
In such material, electron
concentration is not equal to
hole concentration .
In the case of n-type (n > p),
where the conduction occurred
by electrons in conduction
band and Fermi level is shifted
upward in the direction of
conduction band, and a new
level named donor level, ED,
exists.
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If (p>n), results p-type material, conduction occurred by
holes in valance band and a new level acceptor level, EA,
exists. By adding only one atom from doping material to Si
or Ge atoms, the energy required to ionization is 0.01eV
for Ge, and 0.05eV for Si and the conductivity is increased
by factor of 12. In n-type, number of electrons increased
also number of holes decreased below, which was
available in intrinsic. Large number of electrons presents
due to donor’s increases the rate of recombination of
electrons with holes, and the same said in case of p-type.
For both cases, electrons in n-type and holes in p-type
called majorities and the other charges called minorities



1.8.1. CONCENTRATION OF CHARGE CARRIERS IN
EXTRINSIC SEMECONDUCTORS

The probability that electrons occupy a donor level can be
determined:

𝒇 𝑫 =
𝑵𝑫−𝑵𝑫

+

𝑵𝑫
= 𝟏 −

𝑵𝑫
+

𝑵𝑫
𝑬𝒒. 𝟏. 𝟐𝟖

The probability that electrons occupy an acceptor level 
given by:

𝒇 𝑨 =
𝑵𝑨
−

𝑵𝑨
𝑬𝒒. 𝟏. 𝟐𝟗

Where, ND and NA are the donor and acceptor levels ND+,
and NA

- are the ionized donors and acceptor levels.
17



The concentration of ionized charges can be determined
through the probabilities in Fermi distribution function and
gives,

𝑵𝑫
+ =

𝑵𝑫

𝒈 𝒙 𝒆
൘

𝑬𝒇− 𝑬𝑫
𝑲𝑻+𝟏

𝑬𝒒. 𝟏. 𝟑𝟎

𝑵𝑨
+ =

𝑵𝑨

𝒈 𝒙 𝒆
൘

𝑬𝑨− 𝑬𝒇
𝑲𝑻+𝟏

𝑬𝒒. 𝟏. 𝟑𝟏

The constant (g) characterizes the structure of levels and
equal 1/2. The concentration of electrons in C.B and
concentration of holes in V.B is given by:

𝑵+ 𝑵𝑨
− = 𝑷 + 𝑵𝑫

+ 𝑬𝒒. 𝟏. 𝟑𝟐
18
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If NA
- = ND

+ we have extrinsic material have the same
properties of intrinsic. By substituting in Eq.1 .32, we have:

𝑵𝒄 𝒆
Τ𝑬𝒄−𝑬𝒇 𝑲𝑻 +

𝑵𝑫

𝒈
𝒆− Τ𝑬𝑨−𝑬𝒇 𝑲𝑻

= 𝑵𝒗 𝒆
Τ𝑬𝒇−𝑬𝒗 𝑲𝑻 +

𝑵𝑫

𝒈
𝒆− Τ𝑬𝒇−𝑬𝑫 𝑲𝑻 𝑬𝒒. 𝟏. 𝟑𝟑

We supposed that (EA-EF) / kT >1; and (EF- ED) / KT>1. The
solution of Eq.1 .33 is somewhat complicated, for this, we
simplify it for both conduction types as follows:



N-Type Material

Where ND>NA and p < n, Equation 1.32 simplified to
(Eq.1.34), n = ND, then:

𝑵𝒄 𝒆
− Τ𝑬𝒄−𝑬𝒇 𝑲𝑻 =

𝑵𝑫

𝒈
𝒆− Τ𝑬𝒇−𝑬𝑫 𝑲𝑻 𝑬𝒒. 𝟏. 𝟑𝟒

Or: 
𝑵𝒄

𝑵𝑫/𝒈
= 𝒆− Τ𝟐𝑬𝒇−𝑬𝑫− 𝑬𝑪 𝑲𝑻 From which 

𝑬𝒇 =
𝑬𝑫 + 𝑬𝒄

𝟐
−
𝑲𝑻

𝟐
𝒍𝒐𝒈−𝒈 Τ𝑵𝑪 𝑵𝑫 𝑬𝒒. 𝟏. 𝟑𝟓

If T 0, then: 𝑬𝒇 =
𝑬𝑫+ 𝑬𝒄

𝟐
𝑬𝒒. 𝟏. 𝟑𝟔
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By substituting Eq.1.35 in Eq.1.17, we can get the
concentration of electrons in n-type material.

𝐧 = 𝐍𝐜 𝐞
− Τ𝐄𝐜−𝐄𝐟 𝐊𝐓

𝐧 = 𝐍𝐜 𝐞
− 𝑬𝒄− ൗ𝐄𝐜+𝐄𝐃 𝟐+

𝑲𝑻
𝟐

𝒍𝒐𝒈
𝒈 𝑵𝒄
𝑵𝑫

/𝑲𝑻

𝒏 =
𝑵𝑪

𝒈 𝑵𝑪
𝑵𝑫

𝒆 Τ𝑬𝑫−𝑬𝑪 𝟐𝑲𝑻

=
𝑵𝑫𝑵𝑪

𝒈
𝒆 Τ− ∆ 𝑬𝑫 𝟐𝑲𝑻 𝑬𝒒. 𝟏. 𝟑𝟕



P-Type Materials

Where NA> ND and n < p, Eq.1.32 becomes,

P = NA
- Eq.1.38

As we have calculated for p-type:

𝑬𝒇 =
𝑬𝑽 + 𝑬𝒄

𝟐
−
𝑲𝑻

𝟐
𝒍𝒐𝒈 𝒆𝒈 Τ𝑵𝒗 𝑵𝑨 𝑬𝒒. 𝟏. 𝟑𝟗

If T 0, then: The concentration of holes in p-type is,

𝑬𝒇 =
𝑬𝑽 + 𝑬𝑨

𝟐
𝑬𝒒. 𝟏. 𝟒𝟎

𝒑 =
𝑵𝑨𝑵𝑽

𝒈
𝒆 Τ− ∆ 𝑬𝑨 𝟐𝑲𝑻 𝑬𝒒. 𝟏. 𝟒𝟏
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Finally, as we have deduced before in (Eq.1.24),
ni

2 =np , n the n-type is majority and it can be written
as nn and p is minority and it can be written as pn, so
we can write (Eq.1 .24) as: ni

2=nn pn Eq.1.42

𝒑𝒏 =
𝒏𝒊
𝟐

𝒏𝒏
=

𝒏𝒊
𝟐

𝑵𝑫
𝑬𝒒. 𝟏. 𝟒𝟑

For p-type, p is majority and it written as pp, and
electrons are minority and it written as np, so we can
write (Eq.1.24) for p-type as: ni

2= pp np Eq.1.44

𝒏𝒑 =
𝒏𝒊
𝟐

𝑷𝒑
=

𝒏𝒊
𝟐

𝑵𝑨
𝑬𝒒. 𝟏. 𝟒𝟓



Figure 1.22 Effect of Temperature on Fermi Level
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1.8.2. FERMI LEVEL IN
EXTRINSIC MATERIAL

The only parameters which
changes in equations 1.17 and
1.19 which determine
concentrations of n and p when
dopant is added is the Fermi Temperature inT (oK) 

EC

ED

Ef

EA

EV

energy level Ef which depends on temperature and doping
concentrations. If n dopant added to intrinsic material; at a
given temperature T all ND atoms are ionized, and first ND

states in C.B will be filled.



Since Ef is a measure of the probability of occupancy. Ef move
closer to C.B to indicate that many energy States in this band
filled by donor electrons, as shown in figure 1.21. The same
situation leads Ef to move closer to V.B for p-type material. lf
T increases, all donor atoms are ionized and the
concentration of thermally generated electrons in C.B
becomes much larger than the concentration of donor
electrons. Under this condition, the concentration of holes
(p) and electrons (n) become almost equal and the crystal
becomes intrinsic as in figure (1-22). We can conclude that as
the temperature of the extrinsic material increases Ef moves
toward the center of the energy gap.

25



The exact position of Ef in n-type known if we substitute

n = ND and Eq.1.17 becomes:

𝐍𝐃 = 𝐍𝐂 𝐞
− Τ𝐄𝐂− 𝐄𝐟 𝐊𝐓 𝐄𝐪. 𝟏. 𝟒𝟔 ,       And,

𝐄𝐟 = 𝐄𝐂 − 𝐊𝐓 𝐥𝐧
𝐍𝐂
𝐍𝐃

𝐟𝐨𝐫 𝐧 − 𝐭𝐲𝐩𝐞 𝐄𝐪. 𝟏. 𝟒𝟕

𝐄𝐟 = 𝐄𝐕 − 𝐊𝐓 𝐥𝐧
𝐍𝐯
𝐍𝐀

𝐟𝐨𝐫 𝐩 − 𝐭𝐲𝐩𝐞 𝐄𝐪. 𝟏. 𝟒𝟖

Note that if NA = ND, the last two equations are added
together, yields:

𝐄𝐟 =
𝐄𝐂 + 𝐄𝐯

𝟐
−
𝐊𝐓

𝟐
𝐥𝐧

𝐍𝐂
𝐍𝐯

𝐄𝐪. 𝟏. 𝟒𝟗

26



Solved Examples
Example (24)

A piece of silicon has a resistivity which is specified by
the manufacturer to be between 2 and 5 Ohm cm.
Assuming that the mobility of electrons is 1400 cm2/V-
sec and that of holes is 450 cm2/V-sec, what is the
minimum possible carrier density and what is the
corresponding carrier type? Repeat for the maximum
possible carrier density.

Solution

The minimum carrier density obtained for the highest
resistivity and the material with the highest carrier
mobility, i.e. the n-type silicon. The minimum carrier
density therefore equals:

𝒏 =
𝟏

𝒒 𝝁𝒏𝝆𝒎𝒂𝒙
=

𝟏

𝟏. 𝟔 𝒙 𝟏𝟎−𝟏𝟗 𝒙 𝟏𝟒𝟎𝟎𝒙 𝟓
= 𝟖. 𝟗𝟐 𝒙 𝟏𝟎𝟏𝟒𝒄𝒎−𝟑

The maximum carrier density obtained for the
lowest resistivity and the material with the
lowest carrier mobility, i.e. the p-type silicon.
The maximum carrier density therefore equals:

𝒑 =
𝟏

𝒒 𝝁𝒑 𝝆𝒎𝒂𝒙
=

𝟏

𝟏. 𝟔 𝒙 𝟏𝟎−𝟏𝟗 𝒙 𝟒𝟓𝟎𝒙 𝟐
= 𝟔. 𝟗𝟒 𝒙 𝟏𝟎𝟏𝟓𝒄𝒎−𝟑

Example (26)

Silicon crystal is doped with 5 x 1020/m3

atoms per m3 . The donor level is 0.05 eV
from the edge of the conduction band.
Taking the band gap to be 1.12 eV, calculate
the position of the Fermi level at 200 K.

Solution 

The intrinsic carrier concentration obtained
from the known carrier concentration in Si at
300 K. As the carrier concentration at 300K is
1.5x1016/m3, the carrier concentration at 200
K is

𝟐𝟎𝟎

𝟑𝟎𝟎

ൗ𝟑 𝟐

𝒙 𝟏. 𝟓 𝒙 𝟏𝟎𝟏𝟔 = 𝟎. 𝟖𝟐 𝒙 𝟏𝟎𝟏𝟔/𝐦𝟑

As the doping concentration is much larger
than (ni). we can take,

𝒏 ≈ 𝑵𝑫 = 𝟓 𝒙 𝟏𝟎𝟐𝟎/𝒎𝟑 , 𝒕𝒉𝒖𝒔
𝑬𝑭
𝒏 − 𝑬𝑭

𝒊 = 𝑲𝑻 𝒍𝒏 ൗ𝒏 𝒏𝒊 = 𝟎. 𝟏𝟖𝟑 𝒆𝑽
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