1.7. FERMI DIRAC DISTRIBUTION FUNCTION

The energy band divided to energy states, electrons can
occupy some of these. According to Pauli statement that,
there are many states are unoccupied by electrons and no
two electrons has the same energy in the same atom at the
same time. Now, what determine the probability that a
given energy state occupies by electron? The accurate
number of electrons dN having a value of energy in a given
range of energy state E+ AE at absolute temperature can be
expressed by FERMI as:

CVE dE
dN = EED) Eq.1.8
e F/ e +1




Where the constant of proportionality C has the value:

3
41 (2m,) /2
C = (hZ ) 2 _ 6,28 x10%7 elctrons 3, Eq.1.9
m /eV /2

Where, (h) is the Plank’s constant, and

E. is defined as the highest electronic energy at absolute
temperature.

At E = E; the probability of electron occupancy is 50%.

It is important to note that, at OK all the charge carriers
frozen and lies in the lowest level of the energy gap.

In conduction band, there is large number of states has

small probability of occupation, there will be only a few
olectronc in the caondiiction hand 2




In contrast, there a large
number of states in
valance band, most of
them occupied and the
probability of occupation
is unity, so there will be
only a few unoccupied
energy states in valance
band. The FERMI DIRAC
distribution function s
symmetrical around the
FERMI level, figure (1.18).

Energy Gap

Al :

100% 50%
G

ELECTRON OCCUPANCY

0

]

s|ona7 Aduau3

Aol -

(@)

\'

Figure 1-18. Fermi Dirac Distribution

Function

3



If the number of energy states in conduction valance band
are the same. In addition, if the number of electrons in
conduction and valance band are the same. Then FERMI
level must be located in middle of the energy gap in case of
intrinsic material. So in intrinsic material n = p and E = E; and
is noted as E.. In N-Type, the concentration of electrons in
conduction band is greater than concentration of electrons
in intrinsic material, concentration of holes in conduction
band is equal to concentration of holes in intrinsic material.
It follows that, in N-Type, FERMI function shifted upward in
the energy band picture.



N-Type P-Type

In contrast, in P-Type, FERMI
level and FERMI function will
both shifted downward in the
direction of valance band. The
FERMI level serves also as a

measure of electronic
occupancy in material, and is
equal to, 0 0.5 1 0 0.5 1
3 >
3N / 2 ELECTRON OCCUPANCY
E f= > C Figure 1.19 Fermi Dirac Distribution

3 64 x 1019 N3/ 110 Function in N & P-Type Materials
=5.64x10" 2 Egq.1.

Where N is the number of
valance electrons/m?3.



1.7.1. FERMI LEVELS AND CARRIERS DENSITY

The electrical properties of a material depend on
presence or absence of electrons in particular energy level.
FERMI statistics used to determine the distribution of
electrons in any particular energy level. The probability
f(E) can be determined by,

f(E) = Gy Eq.1.11
KT

1+ e
It should be noted that if E = E;, then f(E) = 1/2, so that
there is 50% chance that an energy state is filled by
electron. Figure (1-20) shows the electrons occupancy as

function for temperature.



The probability of occupancy increased as the temperature
increased and decreased as the temperature decreased. At
absolute zero, probability is zero that any level above FERMI
be filled, and probability is unity that any level below
FERMI will be filled. When we apply this distribution at RT
to intrinsic Si which has energy gap 1.1 eV, the energy
difference between the two energy states E_- E; = 0.55 eV, or
about 21 KT (KT = 0.026 eV), in this case E-E; is so large
compared to KT, and Eq.1.11 becomes:

E—E
FE) = e Plkr Eq.1.12



1 - f(E)

B 1
14e T Dr
Eq.113
Eq.1.13 simplified to:
1 - f(E)
= e_(EF_ E)/KT Eq.114 ° % .

ELECTRON CCUPANCY f(E)
Fig.1.20 FERMI Distribution as Function with Temperature

Eq.1.12 and Eq. 1.14 are used to determine the density of
free electrons n and the density of free holes p in the
semiconductor material.



If the density of states in which electrons or holes can
occupy known, and the probability of occupancy known,
the number of free carriers can have determined.

Let N(E) is the number of states/eV/m?3 of the crystal, then
the density of states in an energy range E, to E, is given by:

E>

S = f N (E) dE Eq.1.15
Eq

Number of electrons is the product of states and the

probability of occupancy, so:
Ect

n= f (EYN(E)dE Eq.116

Ecp



Gives: the density of free electrons (n)

and equacl?

and it is equal:

(Ec=Ey)

n= N.e
Where N_is the effective density of states in the conduction band

Ne = [ hZ
In addition, the density of free holes p given by:

(Ef_Ev)
p — N‘U e_ /KT
Where N, is the effective density of states in the valance band

N

2 m, KT

h?2

3/
2 m, KT] 2

3/2

KT Eq.1.17

Eq.1.18

Eq.1.19

Eq.1.20
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Where, N_= N, only, if the effective masses of electrons
and holes are equal from Eo%l .17 and Eq.1.19, we can
calculate the concentration equilibrium value of free
carriers np,

(Ec—Ev)/
np = NC(QL-'} e KT —
N.N,e  “/kr Eq.1.21
As the ener y ga decreases linearly with temperature,
soE, =E, 1 21 becomes:
/ ~(Eo
2.33 x 1043 "‘e’"p] > 13 o= "r f/x  Eq.1.22

mZ
Where E_, is the energy gap at 0 K, B is the variation of E
with temperature For Si, the equmbrlum concentration of
intrinsic carriers given by

11



(1.21)
np=15x10% T3¢~ /KT  Eq.1.23

For intrinsic material where n
concentration is:

p , so the intrinsic

n?=np Eq.1.24

In addition, this known as electrical neutrality law.
Equations 1.17 and 1.19 for determine electrons and holes
concentrations can be applied to both intrinsic and extrinsic
materials, wherein intrinsic n = p. So:

(Ec—Ef) (Ef—Ey)
N.e f/KT = N, e d /KT Eq.1.25

C
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By taking the logarithm of both sides of the

equation above,
N E.+ E,—2Ef

In N = = From which;
Ey
E.+ E KT N
= —— In—  Eq.1.26
2 q N,

If N, = N, at m, = m, Eq.1,26 will be
simplified to:
E.+ E
Ef _ C %
2

Eq.1.27



Solved Examples

Problem (18)

A silicon wafer contains 101 cm3 electrons. Calculate
the hole density and the position of the intrinsic
energy and the Fermi energy at 300 K. Draw the
corresponding band diagram to scale, indicating the
conduction and valence band edge, the intrinsic
energy level and the Fermi energy level. Use n, = 1010
cm,

Solution:

The hole density is obtained using the mass
action law:

n? 1020

P= "%~ 1016

The position of the intrinsic energy relative

to the mid gap energy equals:

E.+ E, 3 m

E,— -~ "% — _ZKTI
‘ 2 2 MM e T

= 5.58 meV

The position of the Fermi energy relative to
the intrinsic energy equals:

N4
EF—Ei:KTln 7 = 0.0258 In
i

= 10*cm=3

81

h_ 3 0.02581 0.
B e "1 o8

016

1010 = 357 meV

Example (19)

The electron density in silicon at room temperature
is twice the intrinsic density. Calculate the hole
density, the donor density and the Fermi energy
relative to the intrinsic energy. Repeat for n = 5 n,
and n =10 n,. Also repeat forp=2n,, p=5n,and p
= 10 n; calculating the electron and acceptor
density as well as the Fermi energy relative to the
intrinsic energy level.

Solution:

The hole density is obtained using the
mass action law: p = n2/n

The doping density obtained by requiring
charge neutrality N;-N_=n-p

The Fermi energy obtained from:
E; - E, = kT In(n/n,) vielding:

n=2n, n=5n n=10n;
p n,/2 n,/5 n,/10
Nd - Na 1.5n, 4.8 n, 9.9 n,
EF - Ei kT In(2) kT In(5) kT In(10)
p=2n, p=5n, p =10 ni
n n, /2 n, /5 n; /10
Nd - Na -4.8 n, -9.9 n,

'1.5 ni i

o . 2 = B Y 2 emm B Jem ) 2 O ewm B A .a ooV
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1.8 EXTRINSIC MATERIALS

In such material, electron
concentration is not equal to
hole concentration .

In the case of n-type (n > p),
where the conduction occurred
by electrons in conduction
band and Fermi level is shifted
upward in the direction of
conduction band, and a new
level named donor level, E,
exists.

n-type

Conduction Band

Doner Level

-

I Energy gap E;

Valance Band

r

p-type

Conduction Band

Eg
ED Energy gap E;
EA

Acceptor Level

p

Valance Band

Figure 1-21 Energy Band Representation for
Extrinsic Material (a) N-Type (b) P- Type
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If (p>n), results p-type material, conduction occurred by
holes in valance band and a new level acceptor level, E,,
exists. By adding only one atom from doping material to Si
or Ge atoms, the energy required to ionization is 0.01eV
for Ge, and 0.05eV for Si and the conductivity is increased
by factor of 12. In n-type, number of electrons increased
also number of holes decreased below, which was
available in intrinsic. Large number of electrons presents
due to donor’s increases the rate of recombination of
electrons with holes, and the same said in case of p-type.
For both cases, electrons in n-type and holes in p-type
called majorities and the other charges called minorities 16



1.8.1. CONCENTRATION OF CHARGE CARRIERS IN
EXTRINSIC SEMECONDUCTORS

The probability that electrons occupy a donor level can be
determined:

+
foy=""No_q_N  poq28
Np Np
The probability that electrons occupy an acceptor level
glven by:
f(4) = -4 Eq.1.29

Where, N, and N, are the donor and acceptor levels N+,

and N, are the ionized donors and acceptor levels. .



The concentration of ionized charges can be determined

through the probabilities in Fermi distribution function and
gives,

N} = Vo Eq.1.30
D (Ef- ED)/ o
g X e (KT+1)
+ Ny
Nt = Eq.1.31

(Ea- Ef)/
g X e (KT+1)

The constant (g) characterizes the structure of levels and
equal 1/2. The concentration of electrons in C.B and
concentration of holes in V.B is given by:

N+ N;=P+ N}, Eq.1.32
18



If N, = N;* we have extrinsic material have the same
properties of intrinsic. By substituting in Eq.1 .32, we have:

N, e Ec—Ef/KT) | 1\;D ¢~ (Ea—Ef/KT)
= N, elEr—Ev/KT) 4 A;” ~(Er~Ep/KT) Eq.1.33

We supposed that (E,-E;) / kT >1; and (E.- E;) / KT>1. The
solution of Eq.1 .33 is somewhat complicated, for this, we
simplify it for both conduction types as follows:

19



N-Type Material

Where N,>N, and p < n, Equation 1.32 simplified to

(Eq.1.34), n = N, then:
Np

N, e (Ec—Ef/KT) — 2 o=(Es~Ep/KT)  Fg 1.34
g

Or: Ne _ e~(2Ef~Ep—Ec/KT) Erom which
e’ B KT

Ef= DZ - > log=9 Nc/No)  Eq.1.35

If T =» O, then: E; = Eq.1.36

20



By substituting Eq.1.35

concentration of electrons in n-type material.
n = NC e_(Ec_Ef/KT)

n= N.e

[ Ee

N

(Ec+Ep)/2+ % log {gNIZ C}/KT]

n =

e(ED_EC)/ZKT

g Nc

\

Np

NpN

g

el~2Ep/2KT) Fq 1.37

in Eq.1.17, we can get the

21



P-Type Materials
Where N,> N, and n < p, Eq.1.32 becomes,
P=N, Eq.1.38
As we have calculated for p-type:

Ey+ E KT
Ef= ——— —~ loged"v/N1 Eq.1.39
If T — 0, then: The concentration of holes in p-type is,
E, = Y24 oy a0
f= > q. 1.
p = AELLNCIVIVETES Eq.1.41
\ 9
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Finally, as we have deduced before in (Eq.1.24),

n? =np , n the n-type is majority and it can be written
as n_. and p is minority and it can be written as p,, so
we can write (Eq.1.24) as: n?=n,p, Eq.1.42

'l% 71?
p,= —= — Eq.1.43
n n, Np

For p-type, p is majority and it written as p, and
electrons are minority and it written as n, so we can
write (Eq.1.24) for p-type as: n?= p,n,Eq.1.44

n; _ng
n,=—\-=—- Eq.1.45
P P, N,
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Figure 1.22 Effect of Temperature on Fermi Level

1.8.2. FERMI LEVEL IN |
EXTRINSIC MATERIAL

The only parameters which
changes in equations 1.17 and
1.19 which determine
concentrations of n and p when
dopant is added is the Fermi | Temperature inT (°K)

energy level E; which depends on temperature and doping
concentrations. If n dopant added to intrinsic material; at a
given temperature T all Ny atoms are ionized, and first N
states in C.B will be filled.

24



Since E; is a measure of the probability of occupancy. E; move
closer to C.B to indicate that many energy States in this band
filled by donor electrons, as shown in figure 1.21. The same
situation leads E; to move closer to V.B for p-type material. If
T increases, all donor atoms are ionized and the
concentration of thermally generated electrons in C.B
becomes much larger than the concentration of donor
electrons. Under this condition, the concentration of holes
Lp) and electrons (n) become almost equal and the crystal

ecomes intrinsic as in figure (1-22). We can conclude that as
the temperature of the extrinsic material increases E; moves
toward the center of the energy gap.

25



The exact position of E; in n-type known if we substitute
n =N, and Eq.1.17 becomes:

Np = Nce (Ec—E)/KT  Eq 1,46, And,

N
E; = EC—KTlnN—C forn—type Eq.1.47
D
N
E; = EV—KTlnN—V forp —type Eq.1.48
A

Note that if N, = N, the last two equations are added

together, yields:
. Ec+ E, KT | Nc Ea 1 46
f > > n NV g. 1.
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Solved Examples

Example (24)

A piece of silicon has a resistivity which is specified by
the manufacturer to be between 2 and 5 Ohm cm.
Assuming that the mobility of electrons is 1400 cm?2/V-
sec and that of holes is 450 cm?/V-sec, what is the
minimum possible carrier density and what is the
corresponding carrier type? Repeat for the maximum
possible carrier density.

Solution

The minimum carrier density obtained for the highest
resistivity and the material with the highest carrier
mobility, i.e. the n-type silicon. The minimum carrier
density thereforle equals: 1

q HnPrmay T 1.6x10-19 x 1400x 5
=8.92x10%*cm=3

The maximum carrier density obtained for the

lowest resistivity and the material with the

lowest carrier mobility, i.e. the p-type silicon.

The maX|mur1n carrier density thelrefore equals:
p =

1y Pmax 1.6 x 10719 x 450x 2
=6.94 x10°cm 3

n=

Example (26)

Silicon crystal is doped with 5 x 102°/m3
atoms per m3 . The donor level is 0.05 eV
from the edge of the conduction band.
Taking the band gap to be 1.12 eV, calculate
the position of the Fermi level at 200 K.

Solution

The intrinsic carrier concentration obtained

from the known carrier concentration in Si at

300 K. As the carrier concentration at 300K is

I1(..5x101"’/ m3, the carrier concentration at 200
is

3/
200\ 2
- 16 _ 16 3
(300> x1.5x10 0.82x10"°/m

As the doping concentration is much larger
than (n,) we can take,

n~ Np= 5x10%°/m?3 , thus
E} — Eby = KT In "/, =0.183 eV
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