
1.9. Temperature Dependence of Semiconductor Conductivity
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In figure 1.23, at low temperature, the charge carriers are
frozen and the resistivity is extremely high, as the
temperature raises, increasing fraction of carriers to ionize
and the resistivity decreases rapidly because of increasing
the ionized charges. When temperature is sufficiently high,
most of dopants are completely ionized. The Conductivity
begins to decrease and the resistivity is increased again just
as in metals. At still higher temperature, there is further
sharp decrease in resistivity due to appreciable excitation of
all carriers and crossing the energy gap.



Solved Examples

Example (31)

Band gap of Si depends on the temperature
as Eg = 1.17 eV − 4.73 × 10−4 T2 / T + 636 .
Find a concentration of electrons in the
conduction band of intrinsic (undoped) Si at
T = 77 K if at 300 K ni = 1.05 × 1010 cm−3.
Solution: 

𝒏𝒊
𝟐 = 𝑵𝒄𝑵𝒗 𝒆𝒙𝒑 −

𝑬𝒈

𝑲𝑻

≈ 𝑻𝟑 𝐞𝐱𝐩 −
𝑬𝒈

𝑲𝑻
Therefore, 

𝒏𝟏 𝑻𝟐

= 𝒏𝟏 𝑻𝟏
𝑻𝟐
𝑻𝟏

ൗ𝟑 𝟐

𝐞𝐱𝐩 −
𝑬𝒈𝑻𝟐

𝟐 𝑲 𝑻𝟐
+

𝑬𝒈𝑻𝟏

𝟐 𝑲 𝑻𝟏

Putting the proper values in the formula we 
obtain that ni(77K) ≈ 10−20cm−3.

Example (32)

Calculate the intrinsic carrier density in
germanium, silicon and gallium arsenide at
300, 400, 500 and 600 K.
Solution 

The intrinsic carrier density in silicon at 300 K equals:

𝒏𝒊 𝟑𝟎𝟎𝑲 = 𝑵𝒄𝑵𝒗 𝒆𝒙𝒑
− 𝑬𝒈

𝟐 𝑲𝑻

= 𝟐. 𝟖𝟏 𝒙 𝟏𝟎𝟏𝟗 𝒙 𝟏. 𝟖𝟑 𝒙 𝟏𝟎𝟏𝟗 𝒆𝒙𝒑
− 𝟏. 𝟏𝟐

𝟐 𝒙 𝟎. 𝟎𝟐𝟓𝟖
= 𝟖. 𝟕𝟐 𝒙 𝟏𝟎𝟗𝒎−𝟑

Similarly, one finds the intrinsic carrier
density for germanium and gallium arsenide
at different temperatures, yielding:
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Germanium Silicon Gallium
Arsenide

300 K 2.02 x 1013 8.72 x 109 2.03 x 106

400 K 1.38 x 1015 4.52 x 1012 5.98 x 109

500 K 1.91 x 1016 2.16 x 1014 7.98 x 1011

600 K 1.18 x 1017 3.07 x 1015 2.22 x 1013



1.10. The Concept of Mobility
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Figure1.24. Random Electron Path at no
Field

Figure1.25. Directed Electron Path under Field

When an electron 
introduced without 
subjected external 
electric field at absolute 
temperature in a perfect 
semiconductor sample. 
The electron will move 
freely random through 
the crystal as shown in 
figure 1.24. 



This is a general property associated with perfect periodic
structures. At room temperature, valance electrons are
liberated by random motion through the crystal. The
random velocity of an electron at room temperature is
about 107 cm/sec. The mean free path of the electrons
between two collisions is in the order of 10-5 about 500
times the distance between neighboring atoms. The
average time between collisions is about 10-12 second.
Under thermal equilibrium condition, the random motion
of electrons leads to zero current in any direction. Thermal
vibration introduced treated as a particle (phonons). Its
collisions with electrons and holes called scattering. The
scattering phenomena increased as temperature increases
for a maximum scattering velocity.
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If we apply electric field to the crystal, the electrons gain a force
q toward the positive pole as shown in fig.1.25, and moves with
acceleration given by:

𝒂 = −
𝒒 𝜺

𝒎
𝑬𝒒. 𝟏. 𝟓𝟎

After time () , the electrons suffer of collisions decreases
velocity (𝝑) between each two consecutive collisions as ∆ 𝝑 = a ,
produces what is called drift velocity (𝝑𝒅) .

𝝑𝒅 = ∆ 𝝑 = 𝝁 𝜺 𝑬𝒒. 𝟏. 𝟓𝟏
The term (q/m) gives the mobility of the charge carriers, then 

(Eq.1.51) becomes:
𝝑𝒅 = 𝝁 𝜺 𝑬𝒒. 𝟏. 𝟓𝟐

Normally,  n > p for any material. For example, in silicon n = 
1800, p = 400 cm2/V.sec, and in germanium we find that n = 

3800, p = 1800 cm2/V.sec.
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1.10.1. FIELD DEPENDENCE ON MOBILITY 

By increasing the subjected field, the drift velocity increases, due to the
increasing of kinetic energy of the electrons. When electric field is higher
increased, a critical value developed and reaches maximum scattering
velocity; this velocity is not more increased by increasing electric field, figure
1.26.
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Solved Examples

Example (36)

Electrons in silicon carbide have a mobility of 1400
cm2/V-sec. At what value of the electric field do the
electrons reach a velocity of 3 x 107 cm/s? Assume that
the mobility is constant and independent of the electric
field. What voltage is required to obtain this field in a 5
micron thick region? How much time do the electrons
need to cross the 5 micron thick region?

Solution:

The electric field obtained from the mobility 
and the velocity:

𝜺 =
𝝁

𝝂
=

𝟏𝟒𝟎𝟎

𝟑 𝒙 𝟏𝟎𝟕
= 𝟑𝟎 𝒌𝑽/𝒄𝒎

Combined with the length one finds the
applied voltage.

V = εL = 30,000 x 5 x 10-6 = 0.15 V 

The transit time equals the length divided
by the velocity:

tr = L/v = 5 x 10-6 /3 x 107 = 16.7 ps

Example (37)

The resistivity of a silicon wafer at room
temperature is 5 Ωcm. What is the doping density?
Find all possible

Solution: 

starting with a initial guess that the conductivity is
due to electrons with a mobility of 1400 cm2/V-s,
the corresponding doping density equals:

𝑵𝑫 = 𝒏 =
𝟏

𝒒 𝝁𝒏𝝆
=

𝟏

𝟏. 𝟔 𝒙 𝟏𝟎−𝟏𝟗 𝒙 𝟏𝟒𝟎𝟎 𝒙 𝟓
= 𝟖. 𝟗 𝒙 𝟏𝟎𝟏𝟒𝒄𝒎−𝟑

The mobility corresponding to this doping density
equals

𝝁𝒏 = 𝝁𝒎𝒂𝒙 +
𝝁𝒎𝒂𝒙 − 𝝁𝒎𝒊𝒏

𝟏 +
𝑵𝑫
𝑵𝝆

𝒂 = 𝟏𝟑𝟔𝟔 𝒄𝒎𝟐/𝒗𝒔

Since the calculated mobility is not the same as the
initial guess, this process must be repeated until the
assumed mobility is the same as the mobility
corresponding to the calculated doping density,
yielding:

Nd = 9.12 x 1014 cm-3 and µn = 1365 cm2/V-s 

For p-type material one finds: 

N = 2.56 x 1015 cm-3 and µp = 453 cm2/V-s
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1.10.2. RECOMBINATION CENTERS MECHANISM
It is an electronic state in the energy gap of semiconductor
materials. These states considered as imperfections in the
crystal. Metallic impurities are capable of introducing such
energy states in the energy gap. The recombination rate is
affected by volume of impurities, and surface
imperfections. There are three main factors affecting the
mobility of charge carriers in semiconductors, they are:
1.10.2.1. Temperature: As temperature increases, the
thermal kinetic energy increases the vibration of atoms
and the charge carriers suffer from Collisions, the
dependence of mobility in temperature given by:

𝝁𝑳 = 𝑲𝑻− Τ𝟑 𝟐 𝑬𝒒. 𝟏. 𝟓𝟑
9



1.10.2.2. Impurities: The scattering of charge carriers results
from the presence of ionized donors or acceptors or impurities.
This charged centers will deflect the motion of carriers by the
electrostatic forces between two bodies, so the density of such
centers affect the velocity; it is also being noted that, the
impurity scattering decreases as temperature increases.

𝝁𝑰 =
𝑲𝑻 Τ𝟑 𝟐

𝑵𝑰
𝑬𝒒. 𝟏. 𝟓𝟒

Where NI , is the density of ionized centers. Appreciable
reduction of mobility results. For example, in germanium the
hole mobility falls to 900 cm2/V.S. (Half its maximum) when the
resistivity is 0.06. Materials in this order of impurity are
actually employing in semiconductor devices.
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1.10.2.3. Dislocations:

Dislocation is atomic misfit, where atoms not probably
arranged, so it has a considerable role of scattering carriers. For
example, in germanium, the dislocations behave as acceptors,
and the mobility affects by:

𝝁𝑫 = 𝑲𝑻 𝑬𝒒. 𝟏. 𝟓𝟓

Now if we combine these three parameters, we have a general
expression to determine such effects in mobility of charge
carriers.
𝟏

𝝁
=

𝟏

𝝁𝑳
+

𝟏

𝝁𝑰
+

𝟏

𝝁𝑫
= 𝜶𝑳 𝑻

Τ𝟑 𝟐 + 𝜶𝑰 𝑻
− Τ𝟑 𝟐 + 𝜶𝑫 𝑻

−𝟏 𝑬𝒒. 𝟏. 𝟓𝟔

Only the first two terms are normally important, because they
are depending more on temperatures.

11
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Solved Examples
Example (38)

Calculate the electron and hole densities in an n-type silicon
wafer (Nd = 1017 cm-3) illuminated uniformly with 10 mW/cm2 of
red light (Eph = 1.8 eV). The absorption coefficient of red light in
silicon is 10-3 cm-1. The minority carrier lifetime is 10 ms.

Solution

The generation rate of electrons and holes 
equals:

𝑮𝒏 = 𝑮𝒑 = ∝
𝑷𝑶𝑷𝑻
𝑬𝒑𝒉 𝒒

= 𝟏𝟎−𝟑
𝟏𝟎−𝟐

𝟏. 𝟖 𝒙 𝟏. 𝟔 𝒙 𝟏𝟎−𝟏𝟗

= 𝟑. 𝟓 𝒙 𝟏𝟎𝟐𝟑 𝒄𝒎−𝟑𝒔−𝟏

Where, α is absorption coefficient, Popt
illumination power , Ept is the red light ,
where the photon energy was converted
into Joules. The excess carrier densities
then obtained from:

𝜹𝒏 = 𝜹𝒑 = 𝝉𝒑 𝑮𝒑 = 𝟏𝟎 𝒙 𝟏𝟎−𝟑 𝒙 𝟑. 𝟓 𝒙 𝟏𝟎𝟐𝟑

= 𝟑. 𝟓 𝒙 𝟏𝟎𝟐𝟏 𝒄𝒎−𝟑

The excess carrier densities then obtained 
from: So that the electron and hole 
densities equal:

𝒏 = 𝒏𝒐 + 𝜹𝒏 = 𝟏𝟎𝟏𝟕 + 𝟑. 𝟓 𝒙 𝟏𝟎𝟐𝟏

= 𝟑. 𝟓 𝒙 𝟏𝟎𝟐𝟏𝒄𝒎−𝟑

Example (39)

What are the approximate thermal
velocities of electrons and holes in silicon
at room temperature?
SOLUTION: 

Assume T = 300 K and recall mn = 0.26 m0.

𝑲𝒊𝒏𝒆𝒕𝒊𝒄 𝒆𝒏𝒆𝒓𝒈𝒚 =
𝟏

𝟐
𝒎𝒏 𝑽𝒕𝒉

𝟐 =
𝟑

𝟐
𝑲𝑻

𝑽𝒕𝒉

=
𝟑 𝑲𝑻

𝒎
= 𝟑 𝒙 𝟏. 𝟑𝟖 𝒙 𝟏𝟎−𝟐𝟑 ൗ𝑱 𝑲 𝒙

𝟑𝟎𝟎 𝑲

𝟎. 𝟐𝟔
𝒙 𝟗. 𝟏 𝒙 𝟏𝟎

= 𝟐. 𝟑 𝒙 𝒎𝟓 Τ𝒎 𝒔 = 𝟐. 𝟑 𝒙 𝟏𝟎𝟕 Τ𝒄𝒎
𝒔

Note that 1 J = 1 kg·m2/s2. Using mp = 0.39 
m0 instead of mn, one would find the hole 
thermal velocity to be 2.2 × 107cm/s. 
Therefore, the typical thermal velocity of 
electrons and holes is 2.5 × 107cm/s, which 
is about 1000 times slower than the speed 
of light and 100 times faster than the sonic 
speed.
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1.11. THE DRIFT CURRENT

Transport of charge carriers under electric field produces a
drift current. The current flow in a sample of figure
(1.27), having electron concentration (n) given by:

𝑰𝒏 = −𝒒 𝒏 𝝑𝒅 𝑨 𝑬𝒒. 𝟏. 𝟓𝟕

Substitute in the drift velocity, gives:
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we know, 𝜺 =
𝑽

𝑳
, 𝑹 =

𝑽

𝑰
, 𝝈 = 𝒒𝒏 𝝁𝒏

We can find the resistance of the sample due to the
electron component as:

𝑹𝒏 =
𝜺 𝑳

𝒒 𝑨 𝒏 𝝁𝒏 𝜺
=

𝑳

𝒒 𝑨 𝒏 𝝁𝒏
= 𝝆𝒏

𝑳

𝑨
𝑬𝒒. 𝟏. 𝟓𝟗

The same steps can be done to determine the drift current
due to the hole component in p-type material,

𝑰𝒑 = 𝒒 𝒑 𝝁𝒏𝒑 𝜺 𝑨

𝝈𝒑 = 𝒒𝒑 𝝁𝒑

𝝆𝒑 =
𝟏

𝒒𝒑𝝁𝒑
𝑬𝒒. 𝟏. 𝟔𝟎



In semiconductor, both carriers are included, so:

𝝈𝑻 = 𝝈𝒏 + 𝝈𝒑 = 𝒒 𝒏 𝝁𝒏 + 𝒑 𝝁𝒑
𝑰𝑻 = 𝒒 𝑨 𝜺 𝒏 𝝁𝒏 + 𝒑 𝝁𝒑 𝑬𝒒. 𝟏. 𝟔𝟏

In intrinsic, 𝒏 = 𝒑 = 𝒏𝒊, then,
𝝈𝒋 = 𝒒 𝒏𝒊 𝒏 𝝁𝒏 + 𝒑 𝝁𝒑 𝑬𝒒. 𝟏. 𝟔𝟐

Note that n >p, so in an intrinsic material the electrons
contribute more to conductivity than holes. It seems that
the conduction is due to electrons, so the conduction in
intrinsic material considered as in n-type material. For
extrinsic material, the conductivity given by:

𝝈𝒏 = 𝒒 𝒏𝒊 𝝁𝒏 𝒘𝒉𝒆𝒓𝒆 𝒏𝒏 > 𝒑𝒏 &
𝝈𝒑 = 𝒒 𝒑 𝝁𝒑 𝒉𝒆𝒓𝒆 𝒑𝒑 > 𝒏𝒑
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1.12. THE DIFFUSION CURRENT

Transport of charges in semiconductors called diffusion. In a
semiconductor bar, the concentration of charge carrier is not
uniform. Diffusion of electrons or holes results from their
movement from higher concentration to lower concentration with
gradient d/dx where concentration of carriers is not distributed
uniform and varies with distance x. sectional area A is,
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Charges (electrons or holes) are in random motion because of
their thermal energy. Their motion gives rise to a current flow
known as diffusion current as shown in figure 1.28, diffusion flux
obeys Fick’s first law:

𝑭 = −𝑫
𝝏 𝑵

𝝏 𝒙
𝑬𝒒. 𝟏. 𝟔𝟑

F is flux of carriers and defined as the number of carriers passing
through m2/sec. Net transport of charges across the surface
constitutes current , it is proportional to the concentration
gradient. Current passing through cross

𝑰 = 𝒒 𝑨 𝑭 𝑬𝒒. 𝟏. 𝟔𝟒
So that, the diffusion current due to electrons given by:

𝑰𝒏 = 𝒒 𝑨 𝑫𝒏

𝜕 𝑁

𝜕 𝑥
𝑬𝒒. 𝟏. 𝟔𝟓



And, the diffusion current due to holes is given by:

𝑰𝒑 = − 𝒒 𝑨 𝑫𝒑

𝜕 𝑃

𝜕 𝑥
𝑬𝒒. 𝟏. 𝟔𝟔

Where Dn , Dp are the diffusion constants for electrons and holes
respectively
The negative sign in (Eq.1.66) indicates that the hole current flows in the
direction opposite to the gradient of the holes. The diffusion constants
related with the mobility by Einstein relationship as:

𝑫𝒑

𝝁𝒑
=

𝑫𝒏

𝝁𝒏
= 𝑽𝑻 =

𝑲𝑻

𝒒
= ൗ𝑻 𝟏𝟏𝟔𝟎𝟎 𝑬𝒒. 𝟏. 𝟔𝟕

For lightly doped Si at room temperature  = 39D. The total current of
electrons and holes components given by the summing of its diffusion
and drift currents as:

𝑰𝒏 = 𝒒𝑨 𝒏 𝝁𝒏 𝑬 + 𝑫𝒏 ൗ𝝏𝒏
𝝏𝒙 𝑬𝒒. 𝟏. 𝟔𝟖

𝑰𝒑 = 𝒒𝑨 𝒑 𝝁𝒑 𝑬 + 𝑫𝒑 ൗ𝝏𝒏
𝝏𝒙 𝑬𝒒. 𝟏. 𝟔𝟗
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Solved Examples
Example (43) 

An abrupt silicon p-n junction (Na = 1016 cm-3 and Nd = 4 x
1016 cm-3) is biased with Va = 0.6 V. Calculate the ideal diode
current assuming that the n-type region is much smaller
than the diffusion length with Wn = 1 µm and assuming a
"long" p-type region. Use µn = 1000 cm2/V-s and µp = 300
cm2/V-s. The minority carrier lifetime is 10 µs and the
diode area is 100 µm by 100 µm.

Solution:

The current calculated from:

𝑰 = 𝒒 𝑨
𝑫𝒏𝒏𝒑𝒐

𝑳𝒏
+
𝑫𝒑𝒑𝒏𝒐

𝑾𝒏
𝒆

ൗ
𝑽𝒐

𝑽𝒕 − 𝟏

With

Dn = µnVt = 1000 x 0.0258 = 25.8 cm2/V-s

DP = µPVt = 300 x 0.0258 = 7.75 cm2/V-s

np0 = n2
i / Na = 1020/1016 = 104 cm-3

pn0 = n2
i / Nd = 1020/4 x 1016 = 2.5 x 103 cm-3

𝑳𝒏 = 𝑫𝒏𝝉𝒏 = 𝟐𝟓. 𝟖 𝒙 𝟏𝟎−𝟓 = 𝟏𝟔𝟏 𝝁𝒎

Yielding  I = 40.7 µΑ

Note that the hole diffusion current occurs
in the "short" n-type region and therefore
depends on the quasi-neutral width in that
region. The electron diffusion current
occurs in the "long" p-type region and
therefore depends on the electron
diffusion length in that region.
Example (44) 

For a p+-n Si junction the reverse current at
room temperature is 0.9 nA/cm2. Calculate
the minority-carrier lifetime if Nd = 1015

cm−3, ni = 1.05 × 1010 cm−3, and μp = 450
cm2 V−1 s−1.
Solution: 

For a p+-n junction

𝑱𝑺 =
𝒆 𝒑 𝑫𝒑

𝑳𝒑
=

𝒆 𝒏𝒊
𝟐 𝑫𝒑

𝑵𝒅𝑳𝒑
=
𝒆 𝒏𝒊

𝟐

𝑵𝒅

𝑫𝒑

𝝉𝒑

ൗ𝟏 𝟐

Taking into account that μ = eD/kT,
we finally get τp = 4.5 × 10−9 s.
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1.13. LIFE TIME OF CHARGE CARRIERS

In intrinsic material n = p, and due to thermal excitation new
hole - electron pairs are produced and others are disappeared as
a result of recombination after a time n , p (mean lifetime). The
lifetime of carriers is in the range from nanosecond to some
hundreds of microseconds. Consider a Si bar of N-type
illuminated by light of the proper frequency, as a result, n and p
concentration will increase by the same amount, so:

𝒑𝒏𝟎
− − 𝒑𝒏𝟎 = 𝒏𝒏𝟎

− − 𝒏𝒏𝒐 𝑬𝒒. 𝟏. 𝟕𝟎

Where pno, nno are the equilibrium concentration of holes and
electrons, and pno

-, nno
- represents the carrier concentration

during the process. If the source of light is turned off, the carrier
concentration will return to its equilibrium values exponentially
and with time constant  = n = p, and we can write:
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𝒑𝒏 − 𝒑𝒏𝟎 = 𝒑𝒏𝟎 − 𝒑𝒏𝟎
− 𝒆− Τ𝒕 𝝉 𝑬𝒒. 𝟏. 𝟕𝟏

𝒏𝒏 − 𝒏𝒏𝟎 = 𝒏𝒏𝟎 − 𝒏𝒏𝟎
− 𝒆− Τ𝒕 𝝉 𝑬𝒒. 𝟏. 𝟕𝟐

From the equations above, the rate of concentration change for
hole is:

𝝏 𝒑𝒏
𝝏 𝒕

= −
𝒑𝒏 − 𝒑𝒏𝟎

𝝉
=

𝝏 𝒑𝒏 − 𝒑𝒏𝟎
𝝏 𝒕

𝑬𝒒. 𝟏. 𝟕𝟑

And, the rate of concentration change for electrons is:

𝝏 𝒏𝒏
𝝏 𝒕

= −
𝒏𝒏 − 𝒏𝒏𝟎

𝝉
=

𝝏 𝒏𝒏 − 𝒏𝒏𝟎
𝝏 𝒕

𝑬𝒒. 𝟏. 𝟕𝟒

The quantity pn - pno or nn - nno represents the excess carrier
density, and the rate of change of excess density is proportional to
the density itself. The (-) sign indicates that the change is decreases
in case of recombination.
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1-14 CONTINUITY EQUATIONS

carrier concentration is a function of both time and distance, upon
fact that charge created or destroyed. Consider a volume of area A
and length dx, fig.1.29, in which the hole concentration is P, and
P/p is the decreasing of hole concentration by recombination, so,
the change in hole



Holes/m3
P

Cross Section 

Area A

 + 

x                    dx 

Figure 1.29 Carriers concentration in volume



concentration by recombination within volume (Adx) is:

𝒒 𝑨 𝝏𝒙 ൗ
𝒑
𝝉𝒑 𝑬𝒒. 𝟏 . 𝟕𝟓

And if g is the thermal rate for generation hole - electron pair/unit
volume, then the increase of concentration by generation is,

𝒒 𝑨 𝝏𝒙 𝒈 𝑬𝒒. 𝟏 . 𝟕𝟔

In general, current vary with distance, current entering volume at x
is I and leaving at x+dx is I+dI, then change in current within volume
is dI. Let the increase in current due to diffusion within volume is q
A dx p/t , since . charge tends to equilibrium, then,

𝒒 𝑨 𝝏𝒙 ൗ𝝏𝒑
𝝏𝒕
= − 𝒒 𝑨 𝝏𝒙 ൗ

𝒑
𝝉𝒑 + 𝒒 𝑨 𝒈 𝝏𝒙 − 𝝏𝑰 𝑬𝒒. 𝟏 . 𝟕𝟕

In addition, since the hole- current is the sum of the diffusion
current and the drift current components, as:
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𝑰𝒑 = − 𝒒 𝑨 𝑫𝒑 ൗ𝝏𝒑
𝝏𝒙 + 𝒒 𝑨 𝒑 𝝁𝒑 𝜺 𝑬𝒒. 𝟏 . 𝟕𝟖

If the semiconductor is in thermal equilibrium and no electric field is
biased, then the hole density will attain a constant value po, under this
condition, I = 0 and p/t = 0,  = 0, so that:

𝒈 = ൗ
𝒑𝟎

𝝉𝒑 𝑬𝒒. 𝟏. 𝟕𝟗

Equation 1.79 indicates those rate at which holes generated thermally
equal the rate of recombination under equilibrium condition. Combining
equations 77,78,79, we obtain the continuity equation or equation of
conservation of charges:

𝝏𝒑

𝝏𝒕
= −

𝒑 − 𝒑𝟎
𝝉𝒑

+ 𝑫𝒑

𝝏𝟐 𝒑

𝝏 𝒙𝟐
− 𝝁𝒑

𝝏 𝒑 𝜺

𝝏𝒙
𝑬𝒒. 𝟏. 𝟖𝟎

If we consider holes in n-type, Eq.1.80 becomes:
𝝏𝒑𝒏

𝝏𝒕
= −

𝒑𝒏− 𝒑𝒏𝟎

𝝉𝒑
+ 𝑫𝒑

𝝏𝟐 𝒑𝒏

𝝏 𝒙𝟐
− 𝝁𝒑

𝝏 𝒑𝒏 𝜺

𝝏𝒙
𝑬𝒒. 𝟏. 𝟖𝟏

25



26

The general continuity equation 1.81 be considered for three 
special cases.
1.When concentration is independent of x at zero bias:

If  = 0 and concentration is independent of x, Eq.1.81 will
be rewrite as:
𝝏𝒑𝒏

𝝏𝒕
= −

𝒑𝒏− 𝒑𝒏𝟎

𝝉𝒑
𝑬𝒒. 𝟏. 𝟖𝟐

The solution of (Eq.1.82) is:

𝒑𝒏 − 𝒑𝒏𝟎 = 𝒑𝒏𝟎
− − 𝒑𝒏𝒐 𝒆− Τ𝒕 𝝉 𝑬𝒒. 𝟏. 𝟖𝟑



2.When concentration is independent of t at zero bias:
If  = 0, and a steady state has been reached at no time,

so that pn/t = 0, Eq.1.81 will be rewritten again as:

𝑫𝒑

𝝏𝟐𝒑𝒏
𝝏 𝒙𝟐

= −
𝒑𝒏 − 𝒑𝒏𝟎

𝝉𝒑
=

𝝏𝟐𝒑𝒏
𝝏 𝒙𝟐

=
𝒑𝒏 − 𝒑𝒏𝟎
𝑫𝒑𝝉𝒑

𝑬𝒒. 𝟏. 𝟖𝟒

The solution of Eq.1.84 is:
𝒑𝒏 − 𝒑𝒏𝟎 = 𝑲𝟏 𝒆

− Τ𝒙 𝑳𝒑 + 𝑲𝟐 𝒆
Τ𝒙 𝑳𝒑 𝑬𝒒. 𝟏. 𝟖𝟓

Where K1, K2 are integration constants, 𝑳𝒑 = 𝑫𝒑 𝝉𝒑 and
it represents the distance into the semiconductor at which
the injected concentration falls to 1/e of its value at
distance x = 0.
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3 . When concentration varies sinusoidal with t at zero bias :
If  = 0, and the injected concentration varies sinusoidal with
angular frequency (),

𝒑𝒏 𝒙 , 𝒕 = 𝒑𝒏 𝒙 𝒆𝒋 𝝎 𝒕 𝑬𝒒. 𝟏. 𝟖𝟔
If Eq.1.86 substituted in to the continuity Eq.1.81, results:

𝒋 𝝎 𝒑𝒏 𝒙 = −
𝒑𝒏 𝒙

𝝉𝒑
+ 𝑫𝒑

𝝏𝟐𝒑𝒏
𝝏 𝒙𝟐

𝑬𝒒. 𝟏. 𝟖𝟕

𝝏𝟐𝒑𝒏
𝝏 𝒙𝟐

=
𝟏 + 𝒋 𝝎 𝝉𝒑

𝑳𝒑
𝟐

𝒑𝒏 𝑬𝒒. 𝟏. 𝟖𝟖

And at F = 0, Eq.1.88 rewritten again as:

𝝏𝟐𝒑𝒏
𝝏 𝒙𝟐

=
𝒑𝒏

𝑳𝒑
𝟐

𝑬𝒒. 𝟏. 𝟖𝟗



Solved Example
Example  (48)

Consider n-type silicon with Nd = 1015 cm−3 at T = 300◦K.
light source is turned on at t = 0. The source illuminates
the semiconductor uniformly, generating carriers at the
rate of Gn = Gp = 1019cm−3s−1. There is no applied field.

(a) Write down the continuity equation and solve it to get
the expression for the excess minority carrier
concentration, 𝜹𝒑 𝒕 , as a function of time for t ≥ 0.
Solution: 

When there is no applied electric field, the carrier
distribution is diffusion driven. The continuity
equation for the minority carrier
𝝏𝒑 𝒙 , 𝒕

𝝏𝒕
=

𝟏

𝒒

𝝏 𝑱𝒑 𝒙 , 𝒕

𝝏𝒙
+ 𝑮𝒑 𝒙 , 𝒕 − 𝑹𝒑 𝒙 , 𝒕

Then reduces to ,
𝝏𝜹𝒑

𝝏𝒕
= 𝑮𝒑 −

𝝏𝜹𝒑

𝝉𝒑
With the general solution 

𝜹𝒑 𝒕 = 𝑨 𝒆𝒙𝒑 −
𝒕

𝝅𝒑
+ 𝑮𝒑𝝉𝒑

Using the initial condition (before the light was 
turned on) that 𝜹𝒑 𝒕 = 0, then we found that 𝑨
= − 𝑮𝒑𝝉. The full solution then is, 

𝜹𝒑 𝒕 = 𝑮𝒑𝝉𝒑 𝟏 − 𝒆𝒙𝒑 −
𝒕

𝝉𝒑
(b) As t >∞, the system will approach steady state.
When the steady state excess carrier concentration
is 5×1013cm−3, get the minority carrier lifetime, 𝝉𝒑.

Solution: 

The system will approach steady state as t >∞, 
Evidently, the steady state carrier density is given

𝜹𝒑 𝒕 |𝐭 → ∞ = 𝑮𝒑𝝉𝒑.

The 𝝉𝒑 must then take on the value

𝝉𝒑 = ൗ𝟓 𝒙 𝟏𝟎𝟏𝟑
𝑮𝒑

.

With Gp = 1019 cm−3s−1, then the minority (hole) 
carried lifetime must be 𝝉𝒑 = 5 × 10−6 s.

(c) Determine the time at which the excess carrier 
concentration becomes half of the steady state 
value, 𝜹𝒑 𝒕 |𝐭 → ∞ that you calculated in (b). 

Solution: 

The value at which

𝒆𝒙𝒑 −
𝒕

𝝉
=

𝟏

𝟐
𝒔𝒐, 𝒕 = 𝒍𝒏 𝟐 𝝉𝒑

= 𝟎. 𝟔𝟗 𝒙 𝟓 𝒙 𝟏𝟎−𝟔 𝒔 29
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(a)

(W)                    Distance

Figure (a).
F1 F2 F3 F4

(x-a/2)     x    x+a/2
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Fig. (1 - 30) Model of ionic motion within crystal, Potential distribution with and without bias

1-15. Flux of Charged Spices

To determine the formula of flux (F), 𝑭 = −𝑫
𝝏 𝑵

𝝏 𝒙
consider the motion of

positively charged impurities in a crystal. The atom of the crystal forms a
series of potential hills, which hinder the motion of the charged impurities as

shown. The height of potential
barrier (W) is in the order of
some of electron volt. In most
material, the distance between
successive potential barrier (a)
is in the order of the lattice
spacing which is in some
angstroms (1 oA = 10-10 meter).
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If a constant field is applied, the potential distribution as a
function of distance is shown in figure b, this make flow of
positively charged particles to the right easier than left. To
calculate the flux (F) at a position (x), it is average of fluxes at
positions (x – a/2) and at (x + a/2), these two fluxes given by
(f1 – f2), and (f3 – f4).Consider component (F1), is product of:
1. Intensity per unit area for impurities (charges) at the

potential valley at (x – a).
2. The probability of a jump of any of these impurities

(charges) to the next valley at position (x)
3. The frequency of attempted jump (ⱱ)



Thus, we can write:

𝑭𝟏 = 𝒂 𝑪 𝒙 − 𝒂 𝒆𝒙𝒑 −
𝒒

𝑲 𝑻
𝑾−

𝟏

𝟐
𝒂 𝝐 (ⱱ) 𝐄𝐪 (𝟏 − 𝟗𝟎)

Where, 𝒂 𝑪 𝒙 − 𝒂 is the density per unit area of the particles
situated in the valley at (x – a). The exponential factor is the
probability of a jump from the valley at (x – a) to the valley at
position (x), and (ⱱ) is frequency of attempted jump note that,
the lowering of the barrier due to the electric field (ε).

Similar formulas can be written for (F2), (F3), and (F4). By
combined them to give a formula for the flux (F) at position (x),
with the concentration (C(x ± a)) approximated by

( 𝐂(𝐱) ± 𝐚 Τ𝛛 𝐂
𝛛 𝐱 , We obtain, 

32



𝑭 𝒙 = - ⱱ 𝒂𝟐 𝒆− Τ𝒒𝑾 𝑲𝑻 𝝏𝑪

𝝏𝒙
𝒄𝒐𝒔𝒉

𝒒 𝒂 𝜺

𝟐 𝑲𝑻
+ 𝟐 𝒂 ⱱ 𝒆− Τ𝒒𝑾 𝑲𝒕 C

sinh -
𝒒 𝒂 𝜺

𝟐 𝑲𝑻
𝑬𝒒 (𝟏 − 𝟗𝟏)

As extremely important, limiting from of this equation is obtained for the
case when the electric field is relatively small, i.e., ε «KT/q a. In this
case, we can expand the cosh and the sinh terms in the equation. Noting
that cosh (x) = 1 and sinh (x) = x for x → 0, this results in the limiting form
of the flux equation for a positively charged spices.

𝑭 𝒙 = −𝑫
𝝏 𝑪

𝝏 𝒙
+ 𝝁 𝜺 𝑪 𝑬𝒒. (𝟏 − 𝟗𝟐) , Where:

𝑫 = 𝒗𝐚𝟐𝒆− Τ𝒒𝑾 𝑲𝑻

𝝁 =
𝒗𝐚𝟐𝒆− Τ𝒒𝑾 𝑲𝑻

ൗ𝑲𝑻
𝒒
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Note that, mobility (µ) and the diffusivity (D) related by:

𝑫 =
𝑲𝑻

𝒒
𝝁

This is the well Known Einstein relationship. A similar derivation
made for the motion of negatively charged spices. In addition, we
can derive that,

𝑫 = 𝑫𝒐𝒆
− Τ𝑬𝒂 𝑲𝑻

Where, (Do) is the diffusivity of impurities in oxide, (Ea) is the
activation energy. Thus, the activation energy corresponds to the
energy required to form a silicon space rather than to the energy
required to move the impurity. Since silicon – to – silicon, bunds
must be broken to form a space. In fact, activation energy of the
diffusivity of acceptor and donor type impurities, and it is in the
range of two and three electron volt in germanium.
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