
2.2.7 Volt - Ampere Characteristics
Equation 2.47 𝑰𝒋 = 𝑰𝒐 𝒆 Τ𝑽 𝑽𝑻 − 𝟏 𝑬𝒒. 𝟐. 𝟒𝟕

indicates the junction current (IJ) related to the biased voltage (v). A
positive value of (IJ) means that the current flows from P to N sides and the
diode is in forward bias. Also it is known that the constant () in Eq.2.53

𝑰 = 𝑰𝒐 𝒆 Τ𝑽 𝜼 𝑽𝑻 − 𝟏 𝑬𝒒. 𝟐. 𝟓𝟑
is equal 1 for germanium and equal 2 for silicon and (VT) is the thermal
voltage and is given by:

𝑽𝑻 = ൗ𝑻 𝟏𝟏𝟔𝟎𝟎 𝑬𝒒. 𝟐. 𝟓𝟓

At room temperature VT = 0.026 V. When V is positive and larger than VT,
Eq.2.47 will be:

𝑰𝒋 = 𝑰𝒐 𝒆
Τ𝑽𝑭 𝜼𝑽𝑻 𝑬𝒒. 𝟐. 𝟓𝟔

The junction current increased with voltage biased, and when the diode is
reverse biased, Eq.2.47 will be:

𝑰𝒋 = 𝑰𝑶 = 𝑰𝑹 = 𝑰𝑺 𝑬𝒒. 𝟐. 𝟓𝟕
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Understanding the Value of built – in voltage 
VT

𝑽𝑻 = ൗ𝑻 𝟏𝟏𝟔𝟎𝟎 𝑬𝒒. 𝟐. 𝟓𝟓

At room temperature

VT = 0.026 V.

0.026 = Τ𝑻 𝟏𝟏𝟔𝟎𝟎

T = 11600 x 0.026 = 301.6 oK

301.6 – 273 = 28.6 oC

𝑽𝑻 = ൗ𝑻 𝟏𝟏𝟔𝟎𝟎 𝑬𝒒. 𝟐. 𝟓𝟓

At room temperature ( 27 oC ) 
= 

27 + 273 = 300 oK

𝑽𝑻 = ൗ𝟑𝟎𝟎
𝟏𝟏𝟔𝟎𝟎

𝑽𝑻 =0.02586
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Fig. (2 – 19)  I-V junction characteristics
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Figure 2.20 difference in V-I characteristics for Si, Ge

For Ge 

Devices
For Si 

Devices

Form of Eq.2.47; figure (2-19), the reverse current is constant
independent of VR , forward and reverse current is shown in figure
(2.19b), the dashed portion of curve indicates, at reverse voltage
(VZ), at this voltage large reverse current flow and the diode to be in
breakdown mode

10 mA
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V                                             V

IJ IJ

Rn                                 RP

VJ

Fig. (2 - 21) Equivalent Circuit for a Diode

Difference in V - I characteristics
for Si, Ge is shown in figure (2-
20), determine the cut-in, offset,
break point or threshold voltage
(V) below which forward current
is very small, less than 1% of its
maximum value). The reverse
saturation current in Ge is in the
range of microamperes and the
reverse saturation current in Si is
in the range of nano amperes.

Since  = 2 for Si, the current
increases as eV/2VT for the initial
bias and then increased as eV/VT.
This initial dependence of
current on voltage accounts for
the delay in the rise of Si device
characteristics.
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2.2.8 Diode Resistance
Resistance R is defined as the ratio between voltage V and
current I. At any point on the I-V characteristics of the
diode, R is equal to the reciprocal of the slope of a line
joining the operating point to the origin. In the
specification sheet maximum VF required to a given IF and
also VR for a given IR is indicated, for example,
VF=0.8V at IF = 10 ma gives RF = 80 
VR=50 V at IR = 0.1 a gives RR = 500 M

In the non-ohm devices, the resistance drop depends upon
the operating current, and in fact we have two possible
resistances to consider.



One is the DC resistance; the other is the dynamic or small
signal resistance (ac resistance). And useful equivalent
circuit for the diode is shown in figure (2-21). The resistor RP
and Rn represent the bulk resistance of the structure, the
junction voltage is given by:

𝑽𝑱 = 𝑽 = 𝑰𝑱 𝑹𝒏 + 𝑹𝒑 𝟐. 𝟓𝟖

The over all resistance of the junction is,

RT =
𝑽

𝑰𝑱
=

𝑽𝑱

𝑰𝑱
+ 𝑹𝒏 + 𝑹𝒑 𝟐. 𝟓𝟗

RT =
𝑽𝑱

𝑰𝑱
+ 𝑹𝒏 + 𝑹𝒑

Or RT = 𝑹𝒅𝒄 + 𝑹𝒏 + 𝑹𝒑 𝟐. 𝟔𝟎

The Dc resistance of the combination is 𝑹𝒅𝒄 = RT - (𝑹𝒏+ 𝑹𝒑)
6
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Dc resistance of ideal part of diode, (rdc) determined graphically as
shown in fig. (2.22) or it can be calculated from:

𝒓𝒅𝒄 =
𝑽𝑱

𝑰𝑱
=

𝑽𝑱

𝑰𝑺 𝒆𝒙𝒑
𝒒𝑽𝑱
𝑲𝑻

− 𝟏

𝟐. 𝟔𝟏

Dynamic resistance (ra) an important parameter and it is equal,

𝒓𝒂 =
𝝏𝑽

𝝏𝑰
𝟐. 𝟔𝟐

Dynamic resistance ra is not constant depends upon the voltage
and we find that the dynamic conductance for PN ideal diode is
given by:

𝒈 =
𝟏

𝑹
=

𝝏𝑰

𝝏𝑽
=

𝑰𝒐𝒆
ൗ𝑽 𝜼𝑽𝑻

𝜼𝑽𝑻
=

𝑰 + 𝑰𝒐
𝜼𝑽𝑻

𝟐. 𝟔𝟑
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I

Ideal Diode

Rac

I1RDC = V1/I1

rdc

V1

V

Fig. (2 - 22) Slopes and points which must 
be selected to obtain the four distinct 

resistances for ideal and real diode

For reverse bias, where V/VT<<1,
conductance g = 1/R will be very small
and dynamic resistance r is very large.
For forward bias, where V/VT >> 1, I >>
Io and dynamic resistance r is given by:

𝒓𝒂 =
𝜼𝑽𝑻
𝑰

𝟐. 𝟔𝟒

Ac resistance rac of ideal diode determined from figure (2-22) as
slope of C.C at the operating points or determined analytically as
follows. It is convenient to calculate ac conductance (gac),

𝑰𝑱 = 𝑰𝑺𝒆𝒙𝒑
𝒒𝑽𝑱

𝑲𝑻
− 𝟏



IF

V VF

Fig. (2 - 24) Diode I-V 
Linear Approximation

9

Slope at 

Operating 

point 1/RF

𝒈𝒂𝒄 =
𝒅𝑰𝑱

𝒅𝑽𝑱
= 𝑰𝑺

𝒒

𝑲𝑻
𝒆𝒙𝒑

𝒒𝑽𝑱

𝑲𝑻
𝟐. 𝟔𝟓

𝒈𝒂𝒄 =
𝒒

𝑲𝑻
𝑰𝑱 + 𝑰𝒔 =

𝟏

𝒓𝒂𝒄
𝟐. 𝟔𝟔

Ac resistance of real diode is then,
𝑹𝒂𝒄 = 𝒓𝒂𝒄 + 𝑹𝒏 + 𝑹𝒑 𝟐. 𝟔𝟕

𝑹𝒂𝒄 =
𝑲𝑻

𝒒

𝟏

𝑰𝒔 + 𝑰𝑱
+ 𝑹𝒏 + 𝑹𝒑 𝟐. 𝟔𝟖

At room temperature, value of Rac,

𝒓𝒂𝒄 =
𝟐𝟓

𝑰𝒔 + 𝑰𝑱
𝒐𝒉𝒎 𝟐. 𝟔𝟗



Note that in some cases the ohmic series resistance will be
important and in other is not. At very high current the
forward ideal diode resistance becomes negligible compared
with the series resistance. Since the series resistance in the
real diode C.C becomes ohmic at high currents.
2.2.9 Calculation of hole and electron currents
current in the junction depend upon physical properties of
the junction, properties of the crystal, density of impurities,
impurity distribution, and many other factors.
When junction reverse biased, current of electrons from n-
region to p-region is essentially zero. Also at the p-side of
the transition region, the electron density must be almost
zero, since electrons arriving at the point are swept down
the potential hill.
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p- side

n-side                                                                   PP

nn

ni pi

Forward bias

pn

np

Reverse bias

Xn Xp

Transition region

Fig. (2 - 25) Carriers densities on the two

sides of the transition region, the p-side

is more doped than n-side

There is a density of electrons
in p-side of junction going
from equilibrium value far
from junction, to zero, at edge
of transition region. A similar
situation is for holes in the n-
side of the junction. This is
shown in figure (2 - 25). The
forward direction is shown as
well. It is observed that large
number of electrons from the
n-side enriches the majority
carrier density on the p-side.



12

Density gradient is now in the opposite direction, and
electron flow to the right. Density gradient within crystal
near the junction are very important because there is no
electric field in the crystal body itself and current is almost
by diffusion due to density gradient. Let us consider the
minority electron current in the p-side. Differential
equation describes the density gradient of electrons in the
p-side in the steady state is (i.e., the continuity equation).

𝒅𝒏𝒑

𝒅𝒕
= −

𝒏𝒑 − 𝒏𝒑𝒐

𝒏
+
𝟏

𝒒

𝒅𝑰𝒏𝒑

𝒅𝒙
𝟐. 𝟕𝟎

Where, (np) is electron density as function of (x) as shown
in figure (2-26).
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Since field strength ε is negligible, we have
only to consider diffusion current,

𝑰𝒏𝒑 = 𝒒𝑫𝒏

𝒅𝒏𝒑

𝒅𝒙
𝟐. 𝟕𝟏

In steady state flow of current, we have
dnp / dt = 0, then from equation (2.70) and
(2.71), we find,

−
𝒏𝒑−𝒏𝒑𝒐

𝒏
+ 𝑫𝒏

𝒅𝟐𝒏𝒑

𝒅𝒙𝟐
= 𝟎 𝟐. 𝟕𝟐

From eq. (2.72) 

𝒏𝒑 𝒙 = 𝒏𝒑𝒐 + 𝑫𝒏𝝉𝒏
𝒅𝟐𝒏𝒑

𝒅𝒙𝟐
= 𝒏𝒑𝒐𝑳𝒏

𝟐 𝒅𝟐𝒏𝒑

𝒅𝒙𝟐

Where, 𝑳𝒏 = 𝑫𝒏𝝉𝒏 and since npo is 

constant, then,

𝒏𝒑 𝒙 − 𝒏𝒑𝒐 = 𝑳𝒏
𝟐
𝒅𝟐 𝒏𝒑 − 𝒏𝒑𝒐

𝒅𝒙𝟐

Direction of forward current

np (0) = npo exp qVJ /KT 

np(x)

1/e

npo

Ln

D
e
n

s
ity

 o
f e

le
c
tro

n
s

Fig. (2 - 26) Electron concentration 

in the p-side decreases with 

increasing distance
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General solution of equation is,

𝒏𝒑 𝒙 − 𝒏𝒑𝒐 = 𝑨𝒆𝒙𝒑 –
𝒙

𝑳𝒏
+ 𝑩𝒆𝒙𝒑 –

𝒙

𝑳𝒏
𝟐. 𝟕𝟑

Where, A, and B are two constants which determined from the boundary
conditions, np(x) = npo at x = infinity, consequently B = 0 because np would
go to infinity for x → infinity np(0) = npo exp qVJ/KT at x = 0 ,
which gives

𝑨 = 𝒏𝒑𝒐𝒆𝒙𝒑
𝒒𝑽𝒋

𝑲𝑻
− 𝒏𝒑𝒐 = 𝒏𝒑𝒐 𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏

Then the solution to this equation is,

𝒏𝒑 𝒙 = 𝒏𝒑𝒐 𝒆𝒙𝒑
𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝒆𝒙𝒑

−𝒙

𝑳𝒏
+ 𝒏𝒑𝒐 𝟐. 𝟕𝟒

The carriers diffuse down, decreasing density gradient, and on the average
they move a distance (Ln) before recombining.



From Eq. (2.73) we see that the density of electrons in the
p-type material depend upon the number being injected
across the junction. This number is controlled by the bias
voltage (VJ). As we move away from the junction the density
of electrons becomes that of the steady state equilibrium
density in the p-material (npo). From Eq. (2.71) and (2.74),
we have,

𝑰𝒏𝒑 𝒙 = −
𝒒𝑫𝒏𝒏𝒑𝒐

𝑳𝒏
𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝒆𝒙𝒑

−𝒙

𝑳𝒏
𝟐. 𝟕𝟓

Then at x = 0

𝑰𝒏𝒑 𝟎 =
𝒒𝑫𝒏𝒏𝒑𝒐

𝑳𝒏
𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝟐. 𝟕𝟔

The negative sign is due to the negative sign of the
concentration gradient dn/dx.

15



16

If we treated the holes in the n-side in a
similar manner, we obtain,

𝑰𝒑𝒏 𝟎 =
𝒒𝑫𝒑𝒑𝒏𝒐

𝑳𝒑
𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝟐. 𝟕𝟕

The junction current IJ is given by, 
𝑰𝑱 = 𝑰𝒏𝒑 𝟎 + 𝑰𝒑𝒏 𝟎 𝟐. 𝟕𝟖

𝑰𝑱 =
𝒒𝑫𝒏𝒏𝒑𝒐

𝑳𝒏
+
𝒒𝑫𝒑𝒑𝒏𝒐

𝑳𝒑
𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝟐. 𝟕𝟗

We now have an expression for the junction
current in terms of the physical properties
of the bulk material which makes up the
device.

𝑰𝒑𝒏 𝟎 =
𝒒𝑫𝒑𝒑𝒏𝒐

𝑳𝒑
𝟐. 𝟖𝟎

𝑰𝒏𝒑 𝟎 =
𝒒𝑫𝒏𝒏𝒑𝒐

𝑳𝒏
𝟐. 𝟖𝟏

n-type             p-type

Large total current

Majority CarriersIp

Majority Carriers                Strongly doped p-type

Weekly doped n-type

Minority Carriers     In Minority Carriers

Forward Bias

Small total current

Minority Carriers 
Ip

not well suppressed

Majority Carriers
Majority Carriers

well suppressed

Reverse Bias

Fig. (2 - 27), relative magnitude of the current near the

junction. Notice that only excess currents are shown, thus in

forward direction it is majority carriers which carry current,

and in reverse direction it is minority carriers which carry

current, level of current in transition region is controlled by

amount of doping and suppression of the two carriers type.

In



Thus, we have the desired currents in terms of measurable
properties. It is usually more convent to have these currents in
form of life time.

Using 𝑳𝒏 = 𝑫𝒏𝝉𝒏 , 𝑳𝒑 = 𝑫𝒑𝝉𝒑 , we obtain,

𝑰𝑱 = 𝒒
𝒑𝒏𝒐
𝝉𝒑

𝑳𝒑 +
𝒏𝒑𝒐

𝝉𝒏
𝑳𝒏 𝟐. 𝟖𝟐

The reverse saturation current increases directly with the minority
carrier density. The minority carrier density increases with
temperature exponentially. Hence the connection between the
reverse bias saturation current is explained. Equation (2.80) may
be rewritten in term of more useful parameters as follows. If the
donor and acceptors are completely ionized, we have,

𝒑𝒏𝒐𝒏𝒏𝒐 = 𝒏𝒊
𝟐 , 𝒑𝒑𝒐𝒏𝒑𝒐 = 𝒏𝒊

𝟐 𝟐. 𝟖𝟑
17
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𝒑𝒑𝒐 = 𝑵𝑨𝒂𝒏𝒅𝒏𝒏𝒐 = 𝑵𝑫 𝟐. 𝟖𝟒

Then, 𝒑𝒏𝒐 =
𝒏𝒊
𝟐

𝑵𝑫
𝒂𝒏𝒅𝒏𝒑𝒐 =

𝒏𝒊
𝟐

𝑵𝑨

And 𝑰𝒐 = 𝒒𝒏𝒊
𝟐 𝑫𝒑

𝑳𝒑𝑵𝑫
+

𝑫𝒏

𝑳𝒏𝑵𝑨
𝟐. 𝟖𝟓

The x- dependent current equations tell us that current is carried
by holes at some points in junction and by electrons at other
points. This variation is shown in figure (2-27). The last equation
(2.85) may be used to calculate reverse bias saturation current if
doping or resistivity of each side of junction is known It is
important for the transistor later, to say something about the ratio
of electrons and holes currents. From eq. (2.75) and (2.76) , it
follows that,



𝑰𝒏
𝑰𝒑

=
𝑫𝒏𝑳𝒑𝒏𝒑𝒐

𝑫𝒑𝑳𝒏𝒑𝒏𝒐
𝟐. 𝟖𝟔

Since, we have that Dn/Dp = µn/µp (Einstein Equation)
𝑰𝒏
𝑰𝒑

=
µ𝒏𝑳𝒑𝒏𝒑𝒐

µ𝒑𝑳𝒏𝒑𝒏𝒐
=

𝝈𝒏𝑳𝒑

𝝈𝒑𝑳𝒏
𝟐. 𝟖𝟕

Apart from the ratio Lp/Ln which is of the order of unity, the
ration of electron current to hole current is determined by
the conductivity (σn) of the n-region over the conductivity
(σp) of the p-region. Thus, if the conductivity (σn) of the n-
region is 100 times as large as that of the p-region, the
current across the junction is carried for 99% by electrons
and for 1% by holes. Typical values for (Ln) and (Lp) are of
the order of 10-3 mm.
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2.2.10 Temperature Dependence of PN Junction
We deduce that, I/t = 0.08% /oC for Si, 0.11%/oC for Ge, also

we have found that the reverse saturation current increases by
7%/oC for Ge, Si. We conclude that the reverse saturation current
double it self-every 10oC rise in temperature. The much larger
value of the reverse saturation current for Ge than for Si, and
since the temperature dependence is the same for both materials,
then the elevated temperature in Ge devices will develop an
excessive large reverse saturation current, where for Si, reverse
saturation current will be quite modest. For more clarification, an
increase in temperature from room temperature to 90 oC increases
the reverse saturation current for Ge to hundreds of
microamperes, in Si it rises to tenth of microamperes
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P-Type               N-Type

Fig. (2 – 28) Charge density as

function of distance

2.2.11. Space Charge or Transition Capacitance
In reverse bias, the majority carrier’s moves away 
from the junction, and the thickness of depletion 
layer is increased, such phenomena has capacitance 
effect.

𝑪𝑻 =
𝝏𝑸

𝝏𝑽
𝑬𝒒. 𝟐. 𝟑𝟗

 Q is the increase in charge caused by V in a time t, 
results current,

𝒊 = 𝑪𝑻
𝝏𝑸

𝝏𝑽
𝑬𝒒. 𝟐. 𝟒𝟎

CT is an important parameter must be considered
where an analysis of electrical circuit is required,
especially if the diode has an abrupt junction. Figure
(2-28) shows the charge density as function of
distance for abrupt junction. Since the net charge
must be zero at no bias, then:
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Fig. (2 – 29) Diode Equivalent Circuit

𝑪𝑻 =
𝝏 𝑸

𝝏 𝑽
= 𝒒 𝑨 𝑵𝑨

𝝏𝒙

𝝏𝑽
𝑬𝒒. 𝟐. 𝟒𝟓

From Eq.2.43, 
𝜕 𝑄

𝜕 𝑉
=

𝜖

𝑞 𝑥 𝑁𝐴
𝑬𝒒. 𝟐. 𝟒𝟔

𝒂𝒏𝒅 𝑪𝑻
𝝐 𝑨

𝒙
𝑬𝒒. 𝟐. 𝟒𝟕

Figure (2-29) equivalent circuit for P-N
diode resistance. Depletion layer of the pn
junction exhibits the behavior of a
capacitance having the same geometry and
dielectric constant, as can be shown in
figure (2-30) .

𝑵 𝑵 𝑬𝒒 𝟐 𝟒𝟏



Clarification for depletion layer extension in 
the too sides of p-n junction
P-Side n - Side

Force one  x its Arm one =  Force two  x its Arm two

NA
+ Xp = ND Xn

q NA q ND

23

NA
+ ND

+  +  +  +
Xn

+  +  +  +

- - - -
XP

- - - -



If NA<< ND, then Xp>>Xn, for simplicity, we neglect Xn, and the
relationship between potential and charge density is given by
Poisson’s equation.

𝝏𝟐 𝑽

𝝏 𝒙𝟐
=

𝒒 𝑵𝑨

𝝐
𝒘𝒉𝒆𝒓𝒆 𝝐 = 𝝐𝒓 𝝐𝒐

At  = -V/X= 0 at X=0, so V=0 at X=0, by integration Poisson’s 
Equation above, we get:

𝑽 =
𝒒𝑵𝑨𝒙

𝟐

𝟐 𝝐
𝑬𝒒. 𝟐. 𝟒𝟐

At X = Xp Xm and V = VB, so:

𝑽𝑩 =
𝒒𝒙𝒎

𝟐 𝑵𝑨

𝟐 𝝐
𝑬𝒒. 𝟐. 𝟒𝟑

And if A is the area of the junction,
𝑸 = 𝒒 𝑵𝑨𝒙𝑨 𝑬𝒒. 𝟐. 𝟒𝟒
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