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Fig. (2 – 30) Potential barriers

in pn junction 

2.2.12 Depletion region and depletion capacitance
It is apparent from figure that the small area of the
depletion layer situated to the left of the junction and
the small area of situated to the right of the junction
are devoid of any mobiles charge but these contain
immobile charge due to impurity atoms.

On one side of junction (p-region) is a negative immobile charge due to
negative ions of the acceptor atoms and on other side of the junction (n-type)
there is an exactly equal amount of positive immobile charge due to the
positive ions of donor Referring to the figure, the width of the depletion layer
near junction is equal to, Xm = Xp + Xn , Since charge neutrality of crystal as a
whole is maintained, the amount of charges in the area to the left and the
right of the junction are equal. It can be rewritten mathematically as,

𝒒𝑨𝑵𝑨𝑿𝒑 = 𝒒𝑨𝑵𝑫𝑿𝒏 𝟐. 𝟒𝟖



This equation is valid even when p-
and n-regions are doped to different
degrees up to certain limits. Thus,
when n-region is doped more than p-
region, a large area of depletion layer
will be situated in the p-region. For
example, when density of donor
atoms in n-region is ten times larger
than that of acceptor atoms in p-
region, the width of the depletion
layer situated in the p-region will be
ten times larger than that in the n-
region. The effective area of depletion
layer can easily be calculated with the
help of Poison’s equation which states
that the second derivatives of the
potential with respect to the distance

is proportional to the charge density.
In the simple one directional case
when the voltage varies only in the x-
direction along the length of the
crystal, the Poison’s equation may be
written as,

𝝏𝟐𝑽 𝒙

𝝏𝒙𝟐
=

𝝆 𝒙

𝝐𝒓𝝐𝒐
𝟐. 𝟒𝟗

Where, V(x) is the voltage at x, ρ(x) is
the charge density at x. In the
portion of the depletion layer
situated in the p-region near the
junction, figure (2-30), the charge
density may be given by,

𝝆 = −𝒒 𝑵𝒂 𝟐. 𝟓𝟎

The negative sign is put since the
acceptor atoms are negatively ionized.
Substitution in equation (2.49) , we can
get the depletion layer width in the p-
region as,
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𝝏𝟐𝑽 𝒙

𝝏𝒙𝟐
=

𝒒 𝑵𝒂

𝝐𝒓𝝐𝒐
𝟐. 𝟓𝟎

In similar way the Poisson’s equation
may be applied for the portion of the
depletion layer situated in the n-
region near the junction. Considering
the charge density in this region is
due to the positively ionized donor
atoms, we may write Poisson’s
equation for this portion of the
depletion layer as,

𝝏𝟐𝑽 𝒙

𝝏𝒙𝟐
=

𝒒 𝑵𝒅

𝝐𝒓𝝐𝒐
𝟐. 𝟓𝟏

Equation (2.49) can be solved for the
particular charge distribution of
interest to obtain the depletion region
width as a function of the junction
voltage. Two approximations for
charge distribution can be used to
cover most examples.

The abrupt or step junction
approximation is used when there is
an abrupt change in impurity
concentration at the junction and
the impurity concentration on
either side of the junction is fairly
uniform. Alloy junctions are usually
approximated by an impurity
concentration by abrupt junction
distribution. Diffused junctions are
usually approximated by a linear
charge distribution in which the
charge varies linearly through the
depletion region near the junction
(linearly graded junction). Solution
of Poisson’s equation for the abrupt
approximation results in,

𝒙𝒑 = 𝑽
𝟐 𝝐𝒓𝝐𝒐

𝒒

𝑵𝑫

𝑵𝑨𝑵𝑫+𝑵𝑨
𝟐 𝟐. 𝟓𝟐

And,

3



𝒙𝒏 = 𝑽
𝟐 𝝐𝒓𝝐𝒐
𝒒

𝑵𝑨

𝑵𝑨𝑵𝑫 + 𝑵𝑫
𝟐

𝟐. 𝟓𝟑

Adding the two thicknesses in
equations 2.52 , and 2.53, we obtain
the full width of the depletion
regions as,

𝒙𝒎 = 𝑽
𝟐 𝝐𝒓𝝐𝒐

𝒒 𝑵𝑨 + 𝑵𝑫

𝑵𝑨

𝑵𝑫
+

𝑵𝑫

𝑵𝑨
𝟐. 𝟓𝟒

For the homogenously doped crystal
as in equation before, the depletion
region width varies as the square rote
of the junction voltage. For a
numerical example, let us take a
germanium crystal where 𝝐𝒓 is to be
equal 16 and say ND =NA = 1015 /cm3,
and 𝝐𝒐 is 8.87 x 10-15 F/cm. and the
built-in voltage is 200 mV at no
biasThe width of the depletion region
is then 8 x 10-5 cm.

There is a special case of doping
levels, which actually occur often in
semiconductor devices. In many
cases one side of the junction has a
much higher impurity concentration
than the other (denoted n+-p or p+-n)
as is true for an alloy junction.
Equations (2.52) and (2.53) can be
simplified as follow, to give an
approximate value for the depletion
region width xm.
For n+-p junction, where ND > NA ,

𝒙𝒎 = 𝒙𝒑 ≅ 𝑽
𝟐 𝝐𝒓𝝐𝒐
𝒒𝑵𝑨

𝟐. 𝟓𝟓

For p+-n junction, where NA > ND ,

𝒙𝒎 = 𝒙𝒏 ≅ 𝑽
𝟐 𝝐𝒓𝝐𝒐
𝒒𝑵𝑫

𝟐. 𝟓𝟔
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Note that, when one side of junction
is heavily doped, the depletion region
expands almost entirely into the
lightly doped region. In case of
linearly graded junction
approximation depletion region width
given by,

𝒙𝒎 = 𝒙𝒑 + 𝒙𝒏 =
𝟏𝟐 𝑽 𝝐𝒓𝝐𝒐

𝒒 𝒂

ൗ𝟏 𝟑

𝟐. 𝟓𝟕

Where, a, is the slope of the linear
impurity distribution. The capacitance
of the depletion region is given by the
same equation that is used to
determine the capacitance of a
parallel plate capacitor, because for a
small voltage increase we add charges
at the boundaries. This is the so-
called junction capacitance.

𝝏 𝑸

𝝏𝑽
= 𝑪𝑻

′ =
𝝐𝒓𝝐𝒐
𝒙𝒎

𝟐. 𝟓𝟖

Where, 𝑪𝑻
′ is the depletion region

capacitance per unit area F/m2, this
capacitance depends on the applied
voltage, dielectric constant, area
and doping levels. From equations
(2.49) and (2.54), we have,
𝑪𝑻
′

=
𝒒 𝝐𝒓𝝐𝒐 𝑵𝑨 + 𝑵𝑫

𝟐𝑽

𝑵𝑨

𝑵𝑫
+

𝑵𝑫

𝑵𝑨
𝟐. 𝟓𝟗

Note that, for homogeneously
doped crystals 1/C2 is a linear
function of the applied voltage. A
plot of 1/C2 versus applied voltage is
linear and extrapolates to VT. This is
shown in figure (2-31). We noted
that for forward biases, a net
voltage VT = - Vo , and it seems that
one could reach zero depletion
region width and infinite
capacitance, and it is not possible
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because in the forward direction the current becomes very
large and the forward bias remains less than the built-in
voltage. The junction voltage, V, is given by,

V = VT – Vo (2.60)

Where, Vo is the applied junction voltage and VT is the zero
bias built-in voltage which calculated from,

6

𝑽𝑻 =
𝑲𝑻

𝒒
𝒍𝒏

𝑵𝑫𝑵𝑨

𝒏𝒊
𝟐

Junction capacitance decreases as
reverse bias increases and as the
impurity concentration decreases.
The capacitance of heavily doped,
abrupt junction is obtained by
substituting equations (2.55) , and
(2.56) into equation (2.58) . For n+-p
junction, where ND >> NA,

𝑪𝑻
′ =

𝒒 𝑵𝑨𝝐𝒓𝝐𝒐
𝟐𝑽

𝟐. 𝟔𝟏

For p+-n junction, where NA > ND,

𝑪𝑻
′ =

𝒒 𝑵𝑫𝝐𝒓𝝐𝒐
𝟐𝑽

𝟐. 𝟔𝟐

The capacitance of a diffused junction can 
be approximated by substituting equation 
(2.59) into equation (2.58), giving,

𝑪𝑻
′ =

𝒒 𝒂 𝝐𝒓𝝐𝒐
𝟏𝟐 𝑽

ൗ𝟏 𝟑
𝟐. 𝟔𝟑



2.2.13 Transition capacitance
The charge density distribution and
the potential curves which are used to
calculate the transition capacitance as
shown in figure (2-32)

𝑪𝑻 =
𝝏𝑸

𝝏𝑽𝒋
−

𝝏𝑸

𝝏𝑽𝑩
=

−𝝏𝑸

𝝏𝑾𝑩
−
𝝏𝑾𝑩

𝝏𝑽𝑩
𝟐. 𝟔𝟒

Where Q is the charge stored on
either side of the junction, we have
−𝝏𝑸

𝝏𝑾𝑩
= − 𝒒 𝑵𝑨 (𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒘𝒓𝒕𝑾𝒑 ) 𝟐. 𝟔𝟓

Differentiation for equation (2.65) ,
we have,
𝝏𝑾𝒑

𝝏𝑽𝑩
=

𝟐 𝝐

𝒒 𝑵𝑨 𝟏 + ൗ
𝑵𝑨

𝑵𝑫

ൗ𝟏 𝟐
𝑽𝑩

− ൗ𝟏 𝟐 𝟐. 𝟔𝟔

Combining equations (2.64 ) , (2.65) , and
(2.66) , we obtain,

𝑪𝑻 =
𝒒 𝝐 𝑵𝑨 𝑵𝑫

𝟐

ൗ𝟏 𝟐
𝑵𝑫 + 𝑵𝑨

ൗ−𝟏
𝟐 𝑽𝑩

ൗ−𝟏
𝟐 𝟐. 𝟔𝟕

Note that, VB = VD – VJ, and for the
reverse bias condition VJ is negative,
while for the forward bias condition
VJ< VD, thus the junction capacitance
does not become excessively large in
the forward bias case. The case of
graded junction may be worked out
exactly as explained for the abrupt
junction. The geometry of the
junction is shown in figure (2-32).
The charge density varies with
distance in a linear manner. The
result of this case is,

𝑪𝑻 = 𝝐 ൗ𝟐 𝟑
𝒂

𝟏𝟐 𝑽𝑩

ൗ𝟏 𝟑

𝟐. 𝟔𝟖
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2.2.14 Diffusion capacitance
When p-n junction is biased in the forward
direction, the transition capacitance becomes
larger, it is true but there is another effect which
is more important, this is called storage or
diffusion capacitance. With forward bias a large
density of minority carriers is injected into the
sample from the opposite side of the junction.
This density is high near the junction and trails
off as one move away from the transition
region. The variations of carrier density with
current are as shown in figure (2-33). There will
be a tail of holes extending into the n-type
region and tail of electrons extending into the p-
type region.
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s
ity Qn = q ND

Qp = q NA

P
o

te
n

tia
l

VB

VD VB = VD - VJ

-Wp 0      Wp

Transition region

Fig. (2 - 32) Charge density distribution 

and the potential curves which are 

used to calculate transition capacitance

Where, 

𝒂 = 𝒒
𝑵𝑨 + 𝑵𝑫

𝑾𝑰
𝟐. 𝟔𝟗

And, 
𝝆 𝒙 = 𝒂 𝒙 𝟐. 𝟕𝟎

Notice that, the junction is symmetrical, 
so that 
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Fig. (2 - 33) Charge density and 
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Expression which describes this distribution in 
case of excess electrons is, from equation (𝟐. 𝟕𝟐)

𝒏𝒑 𝒙 = 𝒏𝒑𝒐 𝒆𝒙𝒑
𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝒆𝒙𝒑

−𝒙

𝑳𝒏
𝟐. 𝟕𝟐

Where, np (x) is excess carrier density only. It is
total charge in this tail, which must be
neutralized by majority carriers from external
circuit, that contribute to storage or diffusion

capacitance, we may integrate charge density in the diffusion tail to obtain 
total charge as follows,

𝑸𝒏 = −𝒒න
𝟎

∞

𝒏𝒑
+ 𝒙 𝒅𝒙 = −𝒒න

𝟎

∞

𝒏𝒑𝒐 𝒆𝒙𝒑
𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝒆𝒙𝒑

– 𝒙

𝑳𝒏
𝒅𝒙 = 𝒒𝒏𝒑𝒐𝑳𝒏 𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝒆𝒙𝒑

– 𝒙

𝑳𝒏
𝒅𝒙|𝟎

∞

𝑸𝒏 = −𝒒𝒏𝒑𝒐𝑳𝒏 𝒆𝒙𝒑
𝒒𝑽𝒋

𝑲𝑻
− 𝟏 𝟐. 𝟕𝟑

If the voltage is varied, we observe a differential capacitance due to the
change in electron stored charge defined by,



𝑪𝒏 = −
𝝏𝑸𝒏

𝝏𝑽𝒋
𝟐. 𝟕𝟒

𝑪𝑫 =
𝒒𝟐

𝑲𝑻
𝒏𝒑𝒐𝑳𝒏 + 𝒑𝒏𝒐𝑳𝒑 𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
𝟐. 𝟕𝟓

Note that the storage capacitance
increases rapidly with forward bias. It
is, in fact directly proportional to the
current. We see that the capacitive
effect which dominates in the forward
bias case is due to the motion and
storage of charge carriers, while the
transition capacitance is due to a true
displacement current just as in an
ordinary capacitor the result for
diffusion capacitance will be used
when transistor equivalent circuits are
discussed. It is therefore more
convenient to put this result into the
following form. Cn can be written as,

𝑪𝒏 =
𝒈𝒏𝑳𝒏

𝟐

𝑫𝒏
Where, 

𝒈𝒑 =
𝒒𝑫𝒑𝒑𝒏𝒐

𝑳𝒑

𝒒

𝑲𝑻
𝒆𝒙𝒑

𝒒𝑽𝒋

𝑲𝑻
=

𝒒𝑳𝒑

𝑲𝑻
𝟐. 𝟕𝟕

Thus we can write,

𝑪𝑫 =
𝒈𝒏𝑳𝒏

𝟐

𝑫𝒏
+

𝒈𝒑𝑳𝒑
𝟐

𝑫𝒑
𝟐. 𝟕𝟖

For simplicity consider abrupt
junction, p-side is heavily doped, so
that total current I = Ipn(0) ,and excess
minority charge Q will exists only in
the n-side .
𝑸 = න

𝟎

∞

𝒒𝑨𝒑𝒏 𝒐 𝒆− Τ𝒙 𝑳𝒑𝒅𝒙 = 𝒒 𝑨 𝑳𝒑𝒑𝒏 𝒐 𝑬𝒒. 𝟐. 𝟕𝟗

And, 𝑪𝑫 =
𝝏𝑸

𝝏𝑽
= 𝒒𝑨𝑳𝒑

𝝏𝒑𝒏 𝒐

𝝏𝑽
𝑬𝒒. 𝟐. 𝟖𝟎

The hole current is I =Ipn(x) at x = 0 , so:

𝐼 =
𝒒 𝑨 𝑫𝒑𝒑𝒏 𝒐

𝑳𝒑
𝑬𝒒. 𝟐. 𝟖𝟏
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And,
𝝏𝒑𝒏 𝒐

𝝏𝑽
=

𝑳𝒑

𝒒 𝑨 𝑫𝒑

𝝏𝑰

𝝏𝑽

=
𝑳𝒑

𝒒 𝑨 𝑫𝒑
𝒈 𝑬𝒒. 𝟐. 𝟖𝟐

Combining equations 2.80, 2.82, gives,

𝑪𝑫 =
𝒈 𝑳𝒑

𝟐

𝑫𝒑
𝑬𝒒. 𝟐. 𝟖𝟑

And since,      𝜏𝑝 =
𝐿𝑝
2

𝐷𝑝
= 𝜏 𝐸𝑞. 2.84

Or,  𝑪𝑫 = 𝝉𝒏𝒈𝒏 + 𝝉𝒑𝒈𝒑 𝟖𝟓

It will often be true that one current will
dominate at the junction and hence the
value of CD will be simplified. If the hole
current dominates, for example, we have,

𝑪𝑫 = 𝝉𝒑𝒈𝒑 = 𝝉𝒑𝒈𝒂𝒄 𝟖𝟔

From equations 2.83, 2.84, results:

𝑪𝑫 = 𝒈 𝝉 𝑬𝒒. 𝟐. 𝟖𝟕

From equation 2.64, we have,
𝟏

𝑹
= 𝒈 =

𝑰

𝜼 𝑽𝑻
Substitute in equation 2.87 by 2.64, we get,

𝑪𝑫 =
𝝉 𝑰

𝜼 𝑽𝑻
𝑬𝒒. 𝟐. 𝟖𝟖

From equation 2.55, CD I, and we
have assumed that I is due to Ip only,
then for accurate assumption, CD in
Eq.2.88 is CDp and similar expression
can be determined for CDn, so, in
general,

𝑪𝑫 = 𝑪𝑫𝒑 + 𝑪𝑫𝒏 𝑬𝒒. 𝟐. 𝟖𝟗

For reverse bias, g is very small, and
then CD is neglected with respect to
CT. For forward bias, CD is greater than
CT by millions of times, so CT is
neglected.
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Solved Example
Example (59) 

Calculate the diffusion capacitance of the diode
at zero bias. Use µn= 1000 cm2/V-s, µp = 300
cm2/V-s, wp

' = 1 µm and wn
' = 1 mm. The

minority carrier lifetime equals 0.1 ms.

A- For the same diode, find the voltage for which
the junction capacitance equals the diffusion
capacitance.

Solution

The diffusion capacitance at zero volts equals

𝑪𝒅 𝒐 =
𝑰𝒔(𝒑) 𝒓𝒑

𝑽𝒕
+

𝑰𝒔(𝒏) 𝒕𝒓(𝒏)

𝑽𝑻
= 𝟏, 𝟕𝟑 𝒙 𝟏𝟎− 𝟏𝟗 𝑭 , 

Using

𝑰𝒔(𝒑) = 𝒒
𝑨 𝒑𝒏𝒐𝑫𝒑

𝑳𝒑
and 𝑰𝒔(𝒏) = 𝒒

𝑨 𝒏𝒑𝒐𝑫𝒏

𝒘𝒑
!

Where the "short" diode expression was
used for the capacitance associated with the
excess charge due to electrons in the p-type
region. The "long" diode expression was
used for the capacitance associated with the
excess charge due to holes in the n-type
region0

The diffusion constants and diffusion lengths equal

Dn = µn x Vt = 25.8 cm2/s

Dp = µp x Vt = 7.75 cm2/s

𝑳𝒑 = 𝑫𝒑𝝉𝒑

And the electron transit time in the p-type 
region equals

𝒕𝜸𝒏 =
𝒘𝒑
𝟐

𝟐 𝑫𝒏
= 𝟏𝟗𝟑 𝒑𝒔

The voltage at which the junction 
capacitance equals the diffusion 
capacitance is obtained by solving

𝑪𝒋𝒐

𝟏 −
𝑽𝒂
𝜸

= 𝑪𝒅𝒐 𝒆
Τ𝑽𝒂 𝑽𝑻

Yielding Va = 0.442 V
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Fig. ( 2 – 34) Charge and Discharge through Junction

2.2.15 Switching Time in p-n Diodes
When a diode is driven from reverse to
forward state, an interval of time is required
before the diode return to its steady state.
Such time is called Forward Recovery Time tfr

and it is the time difference between the 10%
of the diode voltage and the time when the
voltage reaches to 90% of its final value. In
case of forward bias, the densities of both
minorities at the junction are the largest as
shown in figure (2.34a). When the diode is
reversed, the steady state of densities is zero at the
junction figure (2-34b). The minority concentration
reaches to its thermal equilibrium value pn(0) , np(0) far
from the junction , it reaches such value after
recovery time trr (Reverse Recovery Time) from
concentration of 90% to 10% of its final value.
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Fig. (2 – 35) Conduct diode sequence process

Figure (2-35) shows sequence accompanies
reverse biasing of a conduct diode. If VF is
applied for time up to t1, voltage across RL is
large compared to voltage across diode and
equal IF = VF/RL. At t = t1, voltage is reversed
V = -VR, current I does not drop to zero, but it
reversed and remain i = - VR/RL = - IR until
time t = t2. At t = t2, injected minority at x = 0
has reached its equilibrium state. At t1, diode
voltage falls by (If+IR) RL but does nor
reversed. At t = t2, voltage begins to reverse
and current increased. Time t1 to t2 is called
Storage Time ts and time t2 to the time when
diode has recovered is called Transition Time
tt. Diode reaches its recovery time tt when CT

has charged through R by -V . The reverse

VF

Time

VR

Time

Ij

Time

Time 

Vj
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I
Forward bias

Reverse bias
VZ

Fig. (2 - 36) diode 

Characteristics  showing 

breakdown point

2.2.16 Reverse bias breakdown
Ideal diode equation predicts a saturation current (-Io)
regardless of magnitude of reverse voltage. There are two
factors which cause deviation from this theoretical
saturated value. First is leakage current; is almost ohmic
component of current due to leakage surface edges of
junction. It will add to the saturation current, so that
there will be a gradual increase in current as reverse bias is increased. The
second factor is junction breakdown, which is shown in figure (2-36).
Electrically, breakdown is observed as a sudden increase in reverse current at
some voltage VR. The sharpness of knee at breakdown and slope of the
characteristics vary usually, current is limited only by external circuit
resistance. There are two distinct mechanisms which can be used to explain
breakdown. One of these is zener breakdown, and the other is avalanche
breakdown.
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Both will be discussed because in case of wider
junction, avalanche breakdown is evident. It is
possible to distinguish two forms, because in
zener breakdown, breakdown voltage decreases
as temperature increases, and in avalanche
breakdown, breakdown voltage increases as the
temperature increases. At first, zener effect was
thought to be cause of all junction breakdowns.
zener effect is described as internal field

p-side                         n-side

Very abrupt junction

+  +  +  +  +  +

Large reverse bias
Tunneling electron   - - - - -

Fig. (2 - 37) electron in the valance band is 

shown undergoing auto ionization, this 

phenomenon is known as zener effect. The 

electron may be considered to tunnel through 

the potential barrier

emission. This means in a very thin junction where field may become large
with only small applied reverse bias voltage, bands in the transition region
are steeply tilted and it is possible for electrons to jump the forbidden gap.
This situation is shown in figure (2-37). It can be shown that the application
of a voltage V to an abrupt junction in Ge produce a field ε across the
junction of:



𝜺 = 𝟐 𝒙 𝟏𝟎𝟒
𝟐𝑽

𝝆

ൗ𝟏 𝟐

𝒗/𝒄𝒎

Where, ρ is the resistivity on the other side of the junction. One assumes
resistivity of 5 ohm-cm and an applied voltage of 10 volts; the field across
the junction is in the order of 40000 V/cm. Such a field is theoretically high
enough to cause considerable emission across the gap. The effect of the
reverse field is of course to make the step in the transition region high. In the
presence of high field, any electron free in the valance band can be
accelerated by the field. Such electrons can escape from the valance band
across the gap as shown because among other reasons, little or no energy
increase is required to move it from the one such filleted band to the other.
Thus in a narrow junction a relatively small external voltage seems to be able
to cause direct emission from the valance band to conduction band. This
process is a true Zener, or internal field emission effect. It turns out that the
critical field necessary for this effect is about 200,000 V/cm in Ge. Such a
field can only ever be established across a reverse bias p-n junction. Since
Zener breakdown occurs at a given field strength it follows that the actual

17



breakdown voltage depends on the width of the depletion layer. This in turn is
fixed by the distribution of charge impurities across the junction. For an abrupt
type where a sudden transition from p to n occurs, we find the Zener voltage
given by,

𝑽𝒛 = 𝟏𝟎𝟎 𝝆𝒏 + 𝟓𝟎 𝝆𝒑 𝒊𝒏 𝑮𝒆 ,
= 𝟒𝟎 𝝆𝒏 + 𝟖 𝝆𝒑 𝒊𝒏 𝑺𝒊 𝟐. 𝟗𝟎

Where, (ρn) and (ρp) are the resistivity’s on either side of the junction, VZ in
volts if (ρn) and (ρp) are in ohm-cm. In most case of practical interest either ρn
or ρp is negligible, and then VZ may be calculated in terms of the other. The
constants in the above equation were found for particular group of junctions
and probably vary slightly for different qualities of Ge or Si, since they depend
on the carrier mobility values. If the transition from p to n-type is graded, so
that the net concentration across the junction follows a low of, 𝑵𝑫 − 𝑵𝑨 =
𝒂 𝒙 𝟐. 𝟗𝟏

Where, x is the distance in cm, then it turns out that the zener voltage for Ge is,

𝑽𝒁 =
𝟓 𝒙 𝟏𝟎𝟏𝟏

𝒂

Where, VZ in volts and (a) in cm-4.
18



An increase in temperature causes the forbidden gap to become somewhat
narrower, and thus the probability of zener emission increases and zener
breakdown occurs at a lower voltage. In wider junctions, it is found that
breakdown occurs at much lower voltage than can be explained by zener
breakdown theory, the phenomena of avalanche breakdown is believed to be
responsible. In order to understand avalanche breakdown, we must realize
that, there are two processes necessary to cause breakdown. In the first place
there must be a primary ionization process. In the case of junction this is due
to acceleration of electrons from p to n-side of the transition region. The
electrons will normally have scattering collisions which do not allow enough
energy to build up in one free path, so that ionization of the lattice may occur.
If however, the veiled is very large, an electron may be gain enough energy in
one free path so that it can excite another electron out of its bounded state
and raise it into the conduction band. The amount of kinetic energy needed to
cause this is called pair production and it is about 0,72eV. Pair production
creates an electron in the conduction band and a hole in the valance band,
both free to move. 19



When this process occurs in the transition region, both electron and hole are
accelerated by the field. The electron can go on to ionize further electrons.
The hole enters into the secondary process, which is necessary for
breakdown to occur. The hole is accelerated in the opposite direction from
the electron and it is also ionizing or cause pair production. Hence we see
that there is a feedback process which gives us added electron which goes
on to cause pair production, etc. The process is, in other hand, self-
maintaining so long as the field exists. Two details of the process are of
interest. One is that there is a multiplication region near breakdown in
which electrons are causing ionizing processes but holes are not yet causing
enough ionization of the breakdown voltage. At higher temperature, the
mean free paths of electrons and holes are shorter. Therefore, larger is
needed to cause ionization and a higher breakdown voltage is observed.
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Solved Examples

Example (60)

An abrupt pn junction has doping densities of
NA = 5x1015 atoms/cm3 and ND = 1016

atoms/cm3. Calculate the breakdown voltage if
Εcrit = 3x105 V/cm.

Solution

𝑽𝑹 =
𝜺𝒔𝒊 𝑵𝑨 + 𝑵𝑫

𝟐 𝒒 𝑵𝑨𝑵𝑫
𝑬𝒎𝒂𝒙
𝟐

=
𝟏. 𝟎𝟒 𝒙 𝟏𝟎−𝟏𝟐 (𝟓 𝒙 𝟏𝟎𝟏𝟓 + 𝟏𝟎𝟏𝟔)

𝟐 𝒙 𝟏. 𝟔 𝒙 𝟏𝟎−𝟏𝟗 𝒙 𝟓 𝒙 𝟏𝟎𝟏𝟓 𝒙 𝟏𝟎𝟏𝟔
= 𝟖𝟖 𝑽

Example (62)

A Zener diode at room temperature (VT =
0.0259 V) has the specifications VZ = 10 V, IZ =
10 mA , and rz = 20 Ω. Calculate

(a) the Zener breakdown ideality factor η, (b)
the voltage VZ0 in the linear circuit shown, and

(c) the voltage at which the breakdown current
is IZ / 10.
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+

Vz V

Iz Tangent line                   -

Slope = 1/R

Vz0

0          Vz0 Vz VDD

Solution

(a) Equation  𝒓𝒛 = ൗ𝜼𝒛 𝑽𝑻
𝑰𝒛

be used to solve 

for ηz to obtain 𝜼𝒛 =
𝑰𝒛𝒓𝒛

𝑽𝑻
=

𝟏𝟎𝒎 𝒙 𝟐𝟎

𝟐𝟓.𝟗𝒎
𝟕. 𝟕𝟐

(b) The voltage VZ0 is calculated from Eq.  
𝑽𝒛𝟎 = 𝑽𝒛 − 𝑰𝒛𝒓𝒛 to obtain
𝑽𝒛𝟎 = 𝑽𝒛 − 𝑰𝒛𝒓𝒛 = 𝟏𝟎 − 𝟏𝟎𝒎 𝒙 𝟐𝟎𝟗. 𝟖 𝑽

(c) If IS << IZ, Eq. 

𝒊 = 𝑰𝒔 𝒆𝒙𝒑
𝑽

𝜼 𝑽𝑻
− 𝟏 − 𝑰𝒛 𝒆𝒙𝒑 –

𝒗 + 𝑽𝒛
𝜼𝒛𝑽𝑻

Can be solved for the voltage at which i = −1 

mA as follows: 𝒗 = − 𝑽𝒛 − 𝜼𝒛 𝑽𝑻 𝒍𝒏
𝒊

− 𝑰𝒛
−

𝟏𝟎 − 𝟕. 𝟕𝟐 𝒙 𝟐𝟓. 𝟗 𝒎 𝒙 𝒍𝒏 𝟎. 𝟏 = −𝟗. 𝟓𝟒 𝑽

The reverse-bias voltage is the negative of


