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Part (1) Solved PROBLEMS
Visualization of the Silicon Crystal

Example (1):

Write the electronic configuration of silicon has 14 electrons in its atom,
determine in which sub shell and in which orbit and how many electrons in
the highest sub shell energy.

Solution:
The electronic configuration of silicon as follows,
1S2 252 2p® 352 3p?
The highest sub shell energy lies in (M) orbit, in the sub shell (p) which
is not fully occupied , it has only 2 electrons

Example (2):

Write the electronic configuration of iodine (I) has 53 electrons in its
atom, determine in which sub shell and in which orbit and how many
electrons in the highest sub shell energy.

Solution:
The electronic configuration of iodine (I) as follows,
1S2 2S2 2p® 352 3p°® 3D 452 4p® 4D10 4F7
The highest sub shell energy lies in (N) orbit, in the sub shell (F) is not
fully occupied, it has only seven electrons

Example (3):

Write the electronic configuration of Tantalum 73 has 73 electrons in its
atom, determine in which sub shell and in which orbit and how many
electrons in the highest sub shell energy.



Solution:
The electronic configuration of iodine (I) as follows,
1S? 2S? 2p® 352 3p® 3DY 452 4p°® 4D 4F14 552 5pb 5D°
The highest sub shell energy lies in (O) orbit, in the sub shell (D) which
is not fully occupied, it has only 5 electrons

Example (4) :
Write the electron configuration of silicon in its following energy states
14Si+. 14Si+2, 14Si+3.

Solution:

From tables, the atomic number for silicon is 14, which means, it has 14
electrons in its steady state distributed among orbits and sub shells.
Therefore, the electron configuration in the following energy states
14Si*. 14Si*2, 14Si*3 can be represented as,

e 14Si"has 14-1=13 electrons
1s22522p®3s23p?

e 14Si*?has 14-2=12 electrons
1522s22p%3s?

e 14Si*®has 14-3=11 electrons
1s22s22p®3s?

Problem 1

The expression for the Bohr radius can also be applied to the
hydrogen-like atom consisting of an ionized donor and the
electron provided by the donor. Modify the expression for the
Bohr radius so that it applies to this hydrogen-like atom.
Calculate the resulting radius of an electron orbiting around
the ionized donor in silicon. (g, = 11.9 and pe* = 0.26 Lo)

Solution
The Bohr radius is obtained from:



€, h*n?

P Hoq>

However, since the electron travel through silicon one has to
replace the permittivity of vacuum with the dielectric
constant of silicon and the free electron mass with the
effective mass for conductivity calculations so that:

€r

a, =

11.9
=529x —— pm=2.42nm

,d in silicon = a
a, donor ° it iie 0.26

Problem 2

Electron mobility in Si is 1400 cm? V~1s™1. Calculate the mean
free time In scattering, (Relaxationszeit) of electrons.
Effective mass is m*s/mo = 0.33.

Solution: (1.3)
From gy = er/m" we get that t=2.6 x 10713 s,

Problem 3

Calculate thermal velocity of electrons and holes in GaAs at
room temperature. Effective masses are m*/mo = 0.063 and
m*h/mo = 0.53.

Solution:
00 2
~ J, vexp (— m* v/, KT) d3v _ |8kT
- o) 2 - *
J, exp (— m* v7/, KT) d3v nm

Thermal velocities of electrons and holes are 4.3 x 107 and
1.5 x 107 cm/s, respectively.

V¢

Problem 4

Calculate dielectric relaxation time in p-type Ge at room
temperature. Assume that all acceptors are ionized. Na = 10%°
cm=3,&€=16, yp = 1900 cm? V-1s1,



Solution: (1.6)
Tr = €/l4 me Na pp = 4.7 x 10712 s,

Problem 5
Calculate dielectric relaxation time in intrinsic Si at 300 K. € =
12, pn = 1400 cm?2 V1St yn = 3.1 Hp.

Solution:
In this case,
€
T, = = 3.4x10""7s
4mTen,; (un+ up)
Problem 6

Calculate the ambipolar diffusion coefficient of intrinsic
(undoped) Ge at 300 K. pn/pp = 2.1, pn = 3900 cm? V~1s™1,

Solution:
D = 65 cm?/s.

Problem 7

Holes are injected into n-type Ge so that at the sample
surface Apo = 104 cm™3. Calculate Ap at the distance of 4 mm
from the surface if Tp = 1073 s and Dp = 49 cm?/s.

Solution:

Ap = Apoxexp<— >=1.6x1013 cm™3

D, t

pP°p

Problem 8
What is the width of an infinite quantum well if the second
lowest energy of a free electron confined to the well equals
100 meV?

Solution



The second lowest energy is calculated from
h? 2 \*
= =1.6x10720

2m’ (2 Ix) ¥107J

One can therefore solve for the width, Lx, of the well,
yielding:

E,

6.626 x 10734

h
= = = 3.88 nm
J2m'E, V2x9.11x10-31x1.6 x10-20

I

Problem 9

Calculate the lowest three possible energies of an electron in
a hydrogen atom in units of electron volt. Identify all possible
electron energies between the lowest energy and -2 eV.

Solution
The three lowest electron energies in a hydrogen atom can

be calculated from

13.6 eV
E, =— 7 withn=1.2,and 3
resulting in:
E1=-13.6eV,E>=-3.4eV and Ez=-1.51 eV
The second lowest energy, E2, is the only one between the

lowest energy, E1, and -2 eV.

Problem 9

Calculate the maximum fraction of the volume in a simple
cubic crystal occupied by the atoms. Assume that the atoms
are closely packed and that they can be treated as hard
spheres. This fraction is also called the packing density.

Solution:

The atoms in a simple cubic crystal are located at the
corners of the units cell, a cube with side a. Adjacent atoms
touch each other so that the radius of each atom equals a/2.



There are eight atoms occupying the corners of the cube, but
only one eighth of each is within the unit cell so that the
number of atoms equals one per unit cell. The packing
density is then obtained from:

4 3 4 (a3
volume of atoms 3z PT" 3P (5) P 520/
volume of unitcell a3 = a3 = 6 °
or about half the volume of the unit cell is occupied by the
atoms. The packing density of four cubic crystals is listed in
the table below.

Radius Atoms/ | Packing density

unit

cell
Simple cubic a, 1 P/6 = 520
Body centered cubic \/§a/4 2 p\/§/8 — 68%
Face centered cubic 4
Diamond \/§a/8 8 p\/§/l6 _ 349
Problem 10

Calculate the packing density of the body centered cubic,
the face centered cubic and the diamond lattice, listed in
example 2.1 p 28.

Solution
The packing density is calculated as obtained from:
4
volume of atoms 3 p r3
volume of unitcell a3

The correct radius and number of atoms per unit cell should
be used.

A body centered cubic lattice contains an additional atom in
the middle and therefore contains two atoms per unit cell.

The atoms touch along the body diagonal, which equals /3



a. The radius is one quarter of the body diagonal.

A face centered cubic lattice contains six additional atoms in
the center of all six faces of the cube. Since only half of the
atoms is within the cube the total number of atoms per unit
cell equals four. The atoms touch along the diagonal of the

faces of the cube, which equals v2a . The radius is one
guarter of the diagonal.

The diamond lattice contains two face centered cubic lattice
so that the total number of atoms per unit cell equals twice
that of the face centered lattice, namely eight. The atoms
touch along the body diagonal, where two atoms are one
quarter of the body diagonal apart or v/3 a/4 . The radius
equals half the distance between the two atoms.

The radius, number of atoms per unit cell and the packing
density are summarized in the table below.

Radius Atoms/ | Packing density
unit
cell
Simple cubic al, 1 P/6 — 520
Body centered cubi 2
y ered cubic \/§a/4 p\/§/ _ 68%
F tered cubi 4
ace centered cubic ﬁa/4 p\/i/ _ 740
Diamond \/Ea/s 8 p\/§/16 349

Problem 11

Electrons in undoped gallium arsenide have a mobility of
8,800 cm?/V-s. Calculate the average time between collisions.
Calculate the distance traveled between two collisions (also
called the mean free path). Use an average velocity of 107
cmi/s.

Solution The collision time, tc, is obtained from:



. m,m; O.88x0.067x9.1x10‘32_034
<= T 4q 1.6 x10-1 - RS

l = Vavaragetc = 107 x0.34 x1071? = 34 nm

Problem 12

Calculate dielectric relaxation time in p-type Ge at room temperature.
Assume that all acceptors are ionized. Na = 10 cm™, € = 16, yp = 1900
cm? Vis™,

Solution:

€

T, =4.7x10"1%5

N 4meN,u,

Problem 13
Calculate dielectric relaxation time in intrinsic Si at 300 K. € = 12, pn =
1400 cm? V™1s™ pn = 3.1p.

Solution:

In this case
€

= =3.4x10""s
dmen; (1, +n1p)

Ty

Part (2) Solved PROBLEMS
conductivity

Example (1)

Calculate the conductivity and the resistivity of n-type silicon wafer
which contains 10® electrons per cubic centimeter with an electron
mobility of 1400 cm?/Vs.

Solution:
The conductivity is obtained by adding the product of the electronic
charge, g, the carrier mobility, and the density of carriers of each
carrier type, or:

c=q(np,+pu,)
As n-type material contains almost no holes, the conductivity equals:



c=qnu,=1.6x10"1°x1400x 10° = 2.24 1Qcm
The resistivity equals the inverse of the conductivity or:
1 1
p — e
o q(nu,+pun,)
and equals p=1/0=1/2.24 = 0.446 Q cm.

Example (2)

An n-type piece of silicon of length L = 10 micron has a cross
sectional area A= 0.001 cm?. A voltage V = 10 Volts applied across the
sample yielding a current | = 100 mA. What is the resistance, R of the
silicon sample, its conductivity, o , and electron density, n?

Mn= 1400 cm?/Vs

Solution The resistance of the sample equals

R=V/I=10/0.1 =100 Q.

Since R =L /(cA)the conductivity is obtained from:
o=L/(RA)=0.001/(100 x 0.001) = 0.01 1/ Q cm.

The required electron density is related to the conductivity by:
O = q nh pn so that the density equals:

n = o/(qun) = 0.01/(1.6 x 1019 1400) = 4.46 x 103cm=.

Example (3)
A silicon wafer contains 10¥cm=3phosphor atoms. Using the data in
the table;

Arsenic Phosphorus Boron
Hmin(m?V~1s71) 52.2 68.5 44.9
Mmax(m?V~1s71) 1417 1414 470.5
Ni (cm) 9.68x 10*®  9.20x 10%  2.23x 10'7
a 0.68 0.711 0.719

Calculate the resistivity and conductivity of the material. Repeat for
arsenic and boron atoms.

Solution
Plugging the values from table into the following equation,

- Hmax — Bmin

U= Wnin T N
1+ (N_) a

one obtains a mobility of 277 cm?/V-sec for phosphorus-doped
material, 284 cm?/V-sec for arsenic-doped material and 153 cm?/V-sec
for boron-doped material, corresponding to a resistivity of 22.6, 22.0




and 40.9 mQ .cm and a conductivity of 44.3, 45.4 and 24.5 1/Q cm.

Example 4

Estimate the electrical conductivity of intrinsic silicon at 300
K, given that the electron and hole motilities are0.15 m?2 /V-s
and 0.05 m? /V-s.

Solution
The conductivity arises due to both electrons and holes
o = qn;(pe + 1p)
The intrinsic carrier concentration was calculated to be at
300 K. Thus
06=1.6x10"19x1.2x10'%x0.2=3.84x 107*Q/m

Exercise 5

A sample of an intrinsic semiconductor has a band gap of 0.7
eV, assumed independent of temperature.

Taking pn = 0.5 pe and pn = 2 e, find the relationship between
the conductivity at 200 K and300 K.

(Ans. ratio of conductivity = 2014.6 eV)
Er (300 K) - EF (200 K) =4.33 x 103eV

Example 2.9

A piece of silicon doped with arsenic (Ng = 10 cm™3) is 100
um long, 10 um wide and 1 pm thick. Calculate the resistance
of this sample when contacted one each end.

Solution
The resistivity of the silicon equals:
1 1
p = =0.086 Q. cm

gnm, 1.6x10°1°x10' x727
where the mobility was obtained from Table . The resistance
then equals



R = L—0086 1002107 = 8.6 KQ
P, T Y To0x 104 X104
Ry=2=22°_g600

sT T 104 /54

From which one then obtains the resistance:
R=R L = 860 100x 107 = 8.6 KQ

sy T Y Jox102

Problem 2.13

The resistivity of a silicon wafer at room temperature is 5
Qcm. What is the doping density? Find all possible

solutions.
Solution Starting with a initial guess that the conductivity is
due to electrons with a mobility of 1400 cm?/V-s, the
corresponding doping density equals:

1 1
qu.p 1.6x10719x1400x5
The mobility corresponding to this doping density equals

Uy = Mmax + Himax Nﬂ";m = 1366 cm?/vs
D
1+ (i)

Since the calculated mobility is not the same as the initial
guess, this process must be repeated until the assumed
mobility is the same as the mobility corresponding to the
calculated doping density, yielding:
Ng =9.12 x 10* cm= and pn = 1365 cm?/V-s
For p-type material one finds:
Na = 2.56 x 10> cm= and pp = 453 cm?/V-s
Example 2.11

Calculate the electron and hole densities in an n-type silicon wafer
(Ng = 10 cm3) illuminated uniformly with 10 mW/cm? of red light

(Eph = 1.8 eV). The absorption coefficient of red light in silicon is 10
3 cm. The minority carrier lifetime is 10 ms.

Np=n= =8.9x10%cm™3




Solution
The generation rate of electrons and holes equals:

Popr 1072
= 1073 =3.5x10% cm™3s71
E,nq 1.8x1.6x10-1° rAEemes

G,= G, =

Where, a is absorption coefficient, Popt illumination power , Ept is the
red light , where the photon energy was converted into Joules. The
excess carrier densities are then obtained from:

6p=6,=17,6,=10x1073x3.5x10% =3.5x10*  cm™*

The excess carrier densities are then obtained from: So that the
electron and hole densities equal:

n=mn,+ 6,= 107 + 3.5x10%?1 =3.5x10% cm™3

Problem 2.14

How many phosphorus atoms must be added to decrease the
resistivity of n-type silicon at room temperature from 1 Q-cm
to 0.1 Q-cm. Make sure you include the doping dependence
of the mobility. State your assumptions.

Solution
Starting with a initial guess that the conductivity is due to
electrons with a mobility of 1400 cm?/V-s, the corresponding
doping density corresponding to the initial resistivity of 1
Q-cm equals:

1 1

qu.,p 1.6x10°19x1400x1
The mobility corresponding to this doping density equals

=4.46 x10°cm™3

NDEn=

Hmax — Hmin

a
Np
1+ (N—,,)

Since the calculated mobility is not the same as the initial
guess, this process must be repeated until the assumed

= 1274 cm?/vs

Hn = Wmax T



mobility is the same as the mobility corresponding to the
calculated doping density, yielding:

Nd,initial = 4.94 x 10> cm= and pn = 1265 cm?/V-s
Repeating this procedure for a resistivity of 0.1 Q-cm one
find the final doping density to be

Nd final = 8.08 x 10'® cm= and pn = 772 cm?/V-s
The added density of phosphorous atoms therefore equals
Nd, added = 4.94 x 10 - =7.59 x 106 cm3

Problem 2.26

A piece of silicon has a resistivity which is specified by the
manufacturer to be between 2 and 5 Ohm cm. Assuming that
the mobility of electrons is 1400 cm?/V-sec and that of holes
is 450 cm?/V-sec, what is the minimum possible carrier
density and what is the corresponding carrier type? Repeat
for the maximum possible carrier density.

Solution

The minimum carrier density is obtained for the highest
resistivity and the material with the highest carrier mobility,
I.e. the n-type silicon. The minimum carrier density therefore

equals:

n= v = ! =8.92 x10%cm=3
q UnPmax 1.6x10719x1400x5

The maximum carrier density is obtained for the lowest
resistivity and the material with the lowest carrier mobility,
I.e. the p-type silicon. The maximum carrier density therefore
equals:

p = ! = ! =6.94 x10°cm™3
qUpPmax 1.6x1071% x450x 2 '
Problem 2.27

A silicon wafer has a 2-inch diameter and contains 104 cm-3
electrons with a mobility of 1400 cm?/V-sec. How thick



should the wafer be so that the resistance between the front
and back surface equals 0.1 Ohm?

Solution
The resistance is given by
L
R = P Z
Where A is the area of the wafer and L the thickness, so that
the wafer thickness equals:
_RA_ 0.1xpx(2.54)°

L= = 0.455
D 44. 6 i
The resistivity, p, was obtained from:
1 1
p= =44.6 A cm

gnp, 1.6x1019 x1400x 10

Part (3) Solved PROBLEMS
Temperature Dependence of Semiconductor Conductivity

Band gap of Si depends on the temperature as
Eg=1.17eV-473 x10% T2/ T+ 636 . Find a concentration
of electrons in the conduction band of intrinsic (undoped) Si
at T=77 K if at 300 K nj =1.05 x 101° cm™3.

Solution: (1.2)
E E
it = v ()= o)
Therefore,

3/2

EgTZ Eng )

exp (— +

T,
n1(T2) = n4(Ty) <_) 2KT, 2KT,

T,

Putting the proper values in the formula we obtain that
ni(77K) = 10™2%cm3,

5. Hole mobility in Ge at room temperature is 1900 cm? V™1s™,



Find the diffusion coefficient.

Solution: (1.5)
From eD = pkT, it follows that D = 49 cm?/s.

Example 2.4b
Calculate the intrinsic carrier density in germanium, silicon
and gallium arsenide at 300, 400, 500 and 600 K.

Solution
The intrinsic carrier density in silicon at 300 K equals:
—E
n;(300K) = ,/N_N, exp ( 9)
2 KT
= \/2.81x1019 x 1.83 x 1019 exp ( — L1z )
2x0.0258

=8.72x10°m™3
Similarly, one finds the intrinsic carrier density for
germanium and gallium arsenide at different temperatures,
yielding:

Germanium Silicon Gallium Arsenide
300 K |2.02 x 10%3 8.72 x 10° 2.03 x 108
400 K [1.38 x 10%° 4.52 x 10*? 5.98 x 10°
500 K |[1.91 x 10% 2.16 x 10*4 7.98 x 10t
600 K |1.18 x 10% 3.07 x 10%° 2.22 x 10*3

Example 2.2 Calculate the energy band gap of germanium,
silicon and gallium arsenide at 300, 400, 500 and 600 K.

Solution The band gap of silicon at 300 K equals:
T? 0.473 x 1073 x (300)?

a
E_(300k)= E, (0k)— =1.166 —
g ) g(0 k) T+b 300 + 636
=1.12 eV

Similarly, one finds the energy band gap for germanium and



gallium arsenide, as well as at different temperatures,
yielding:

Germanium Silicon Gallium
Arsenide

T=300K 0.66 eV 1.12 eV 1.42 eV
T =400 K 0.62 eV 1.09 eV 1.38 eV
T =500 K 0.58 eV 1.06 eV 1.33 eV
T =600 K 0.54 eV 1.03 eV 1.28 eV

Problem 2.2 At what temperature does the energy band gap
of silicon equal exactly 1 eV?

Solution

The energy band gap is obtained from:

E.(T) = E.(0K) a T? 166 O.473x10‘3xT2_1 .
g\ = By T+b T+636

The type equation here is quadratic equation can be solved
yielding
E (0 k) — E (T k)

2a
t j(Egm k) — Ey(T k)>2 b (Eg(0 k) — Ey(T k)
2a a
=679 K

Problem (6)

If no electron-hole pairs were produced in germanium (Ge) until the
temperature reached the value corresponding to the energy gap, at
what temperature would Ge become conductive? (Ewn = 3/2 kT)

Solution

E,, = ?’Zﬂ E,=0.72x1.6 x1071%]

_0.72x1.6x107" x2




The temperature would have to be 5.3 x 10%°C, about 4400°C above
the melting point of Ge.

Example (3)
Hole mobility in Ge at room temperature is 1900 cm? V™1s™, Find the
diffusion coefficient.

Solution:
From eD = pkT, it follows that D = 49 cm?/s.

8. How does the reverse current of a Si p-n junction change if
the temperature raises from 20 to 50 °C? The same for a Ge p-
n junction. Band gaps of Si and Ge are 1.12 and 0.66 eV,
respectively.

Solution: (3.8)
Since

Js~ nlz ~T3 exp (_ %) ’

3
ﬁgﬁ - (%) exp (_ KE;'Z * KE;)

we get

From here the ratios of the reverse currents in the p-n
junctions made of Ge and Si are 15 and 82, respectively.

9. Estimate temperatures at which p-n junctions made of Ge,
Si, and GaN lose their rectifying characteristics. In all cases
Na = Ng = 10'° cm™3. Assume that Eq are independent of the
temperature and are 0.66, 1.12, and 3.44 eV for Ge, Si, and
GaN, respectively. Intrinsic carrier concentrations at room
temperature are n® = 2 x 1013, nSi = 101°, and n®a; = 107°
cm=3,

Solution: (3.9)
p-n junction stops working when concentrations of electrons



and holes equalize. It happens when Na(Na) = ni = YNcNy
exp(=Eq/2kT) = T32 exp(—=Eg/2KT).

From here and the parameters given we get that the
maximum temperatures are Tee ® 400 K, Tsi = 650 K, and Tean
= 1700 K. That is, only wide band gap semiconductors are
suitable for extremely applications.

Part (4) Solved PROBLEMS

Electron and Hole Concentrations

Example 2.6a

A germanium wafer is doped with a shallow donor density of
3 ni/2. Calculate the electron and hole density.

Solution
The electron density is obtained from equation

N — N7 N* — N7\° 3 9
n0=D—A+\/<u> +n?=n|>+ |[=+1

2 2 4 16
= Zni
and the hole density is obtained using the mass action law:
_ n; _n;
pO - no - 2

Example 2.6b
A silicon wafer is doped with a shallow acceptor doping of 1016
cm-3, Calculate the electron and hole density.

Solution
Since the acceptor doping is much larger than the intrinsic
density and much smaller than the effective density of states, the
hole density equals: -
P, = N} = 10%cm™2
The electron density is then obtained using the mass action law



n? 102°

= = = 10*cm™3
NG~ 1016

n,

Problem 2.6

Calculate the effective density of states for electrons and
holes in germanium, silicon and gallium arsenide at room
temperature and at 100 °C. Use the effective masses for
density of states calculations.

Solution The effective density of states in the conduction
band for germanium equals:

3
2 pm; KT\ /2
NC=2< e )
3
_, <2px0.55x9.11x10—31x1.38x10—22x300) /2

(6.626 x 10734)2

=1.02x10>>m 3 =1.02 x10¥cm3
Where, the effective mass for density of states is used.
Similarly, one finds the effective densities for silicon and
gallium arsenide and those of the valence band, using the
effective masses listed below:

Germanium | Silicon Gallium Arsenide
me/mo 0.55 1.08 0.067

Nc (cm3) [1.02x 10" |2.81x10*° |4.35x 10"

Nv (cm3) |5.64x 10® |1.83x 10 |7.57 x 108

The effective density of states at 100 °C (372.15 K) are obtain

from:

T \/2
N,(T) = N,(300k) (—)

300
yielding:
T =100°C Germanium Silicon Gallium Arsenide
Nc (cm™) 1.42 x 10*° 3.91x 10 |6.04 x 10Y
Nv (cm™) 7.83 x 1018 2.54x 10° |1.05x 108




Problem 2.7

Calculate the intrinsic carrier density in germanium, silicon
and gallium arsenide at room temperature (300 K). Repeat at
100 °C. Assume that the energy band gap is independent of
temperature and use the room temperature values.

Solution The intrinsic carrier density is obtained from:
E

n (1) = [NV, exp (- L)

where both effective densities of states are also temperature
dependent. Using the solution of Problem 2.6 one obtains

T=300K Germanium Silicon Gallium Arsenide
ni (cm) 2.16 x 10%3 8.81 x 10° 1.97 x 10°
T =100°C Germanium Silicon Gallium Arsenide
ni(cm3) 3.67 x 10* 8.55 x 10t 6.04 x 108
Example 2.11

Calculate the electron and hole densities in an n-type silicon
wafer (Ng = 107 cm=3) illuminated uniformly with 10 mW/cm?
of red light (Eph = 1.8 eV). The absorption coefficient of red
light in silicon is 103 cm. The minority carrier lifetime is 10

us.

Solution
The generation rate of electrons and holes equals:
popt -3 10_2
G,= G, = = 10
n= W =0 LA 1.8x1.6x10 1

=3.5x108cm3s71
where the photon energy was converted into Joules. The
excess carrier densities are then obtained from
dn=dp = t,G,=10x10"°x3.5x10" =3.5x10%cm™3



So that the electron and hole densities equal:
n=n,+dn= 107 +3.5x10% = 107cm3
n; dp — (1010)2

_ 8 _ 8 .0y —3
p—n—0+ p—W+3.5x10 = 3.5x10°cm

Problem 2.11

A silicon wafer contains 10 cm3 electrons. Calculate the
hole density and the position of the intrinsic energy and the
Fermi energy at 300 K. Draw the corresponding band
diagram to scale, indicating the conduction and valence
band edge, the intrinsic energy level and the Fermi energy
level. Use ni =10%° cm=3,

Solution The hole density is obtained using the mass action
law:

2 20
n; 10 P
p=n =1016=10 cm
The position of the intrinsic energy relative to the midgap

energy equals:

Ec+E,_ 3 . mp_ 3 . 081
" R T ke " 108
= 5.58 meV

The position of the Fermi energy relative to the intrinsic
energy equals:

Nd 1 16
Er— E;=KT In (7) = 0.0258 In 1010 = 357 meV

Problem 2.12

A silicon wafer is doped with 1013 cm-3 shallow donors and 9
x 10* cm= shallow acceptors. Calculate the electron and
hole density at 300 K. Use ni = 10°cm3,



Solution
Since there are more donors than acceptors, the resulting
material is n-type and the electron density equals the
difference between the donor and acceptor density or:

n= Ng;— N,= 1013 -9x10'? = 10%cm3
The hole density is obtained by applying the mass action
law:

Example (1)
A Si sample at room temperature is doped with 10!'As atoms/cm?,
What are the equilibrium electron and hole concentrations at 300 K?

Solution Since the Nais zero we can write,
NP, = N;
and n,+ Ngy= p,+ Np
ni—- Np—n?=o
Solving this quadratic equation results in
no=1.02x10*[cm]
and thus,
Po= Nni?/ no= 2.25x10%°/ 1.02x10"!
Po= 2.2x10°[cm®]
Notice that, since Np>nji, the results would be very similar if we
assumed no=Np=10%cm=3, although there would be a slight error since
Npis not much greater than n;.

Question 2:
What are the carrier concentrations and Conductivity in

intrinsic Si?[For Si: g =1.1eV, me = 0.25me, mp = 0.5me, e
=0.15 m?V1s?t, up =0.05 m?Vvis?]

Solution:
For intrinsic material ,
Nnc = pv = nj, Obtain n; from:



o KT : g
ni=2(mm ) -
(memh) (ﬂfhz) exp{ 2k }

For Si: gg=11eV, me =0.25me, mp = 0.5m

So at room temperature (T = 300K):

3/
k x300 } 2
3.14 xh?

} =9.8x10>m3

n; =2 (0.25 mex0.5m3)3/4x{
1.1eV
2x300k

X

exp -

Conductivity o = Ncepe + Pvepn
G = Ni€le + Ni€Ln
o= (9.8x10"m3x1.6 x1071% x 0. 15 m?/Vs)
+ (9.8x10m 3 x 1.6 x1071° x 0.05 m?/Vs)

o =(2.3x10%) + (7.8 x 105) Q'm*
= (2.3 +0.78) x 10
o =3.1x 10“Qm"!

Comparing answers for Q1 and Q2:

doping Si with 1 part in 10° (of P) has led to an increase in ¢
of a factor > than 10°.

Example 10 (3)

Pure germanium has a band gap of 0.67 eV. It is doped with 3 x
10%Y/ m?3 of donor atoms. Find the densities of electrons and holes
at 300 K. (effective masses me = 0.55 mo and mn = 0.37 mo).



Solution:
For Ge , the intrinsic concentration is

-E

n; = \/N.N,e okt

From tables, we find for pure germanium
Nc =1x 102 and Nv =6 x 10?4, Eqg = 067 eV

Substituting

n; = J1x 1025 x 6x 1024e *"/2x0.026
Given numerical values, ni= 2.4 x 101°/ m3
The density of donor atoms is Np = 3 x 102/m3,
Thus the electron density is given by:

Ny |Ni+4n?
n=7+ TENd as N, >>n;

Substituting,
3x1021 (3x1021)” +4 (2.4x1019)°
=3 7 4
Thus, n =3 x 102/m3, using n? =n p , we get for the density of
holes (2.4 x 101%)? = 3 x 10%!p , then p =(2.4 x 10%9)?/3 x 10%1=
p=1.92 x 10/m3,

Problem (4)
The resistivity of a silicon wafer at room temperature is 5 Q

cm. What is the doping density? Find all possible solutions.

Solution:
Starting with an initial guess that the conductivity is due to
electrons with a mobility of 1400 cm2/V-s, the corresponding

doping density equals:



1 1

qu,p 1.6x10°1°x1400 x5
The mobility corresponding to this doping density equals

Hmax — Hmin
Hn = Hmin t N\ &
1+ (N—d)
Since the calculated mobility is not the same as the initial
guess, this process must be repeated until the assumed
mobility is the same as the mobility corresponding to the
calculated doping density, yielding: Ng = 9.12 x 10** cm™ and
Un = 1365 cm?/V-s. For p-type material one finds: Na = 2.56 x
101> cm= and pp = 453 cm?/V-s
Neg = 9.12 x 10 cm= and pn = 1365 cm?/V-s For p-type
material one finds: Na = 2.56 x 10*® cm=3 and pp = 453 cm?/V-s

Np =n= =8.9x10"cm™3

Problem (5)

Consider the problem of finding the doping density, which
results in the maximum possible resistivity of silicon at room
temperature. (ni = 10 cm-3, pun = 1400 cm?/V-sec and pp = 450
cm?/V-sec.) Should the silicon be doped at all or do you
expect the maximum resistivity when dopants are added? If
the silicon should be doped, should it be doped with
acceptors or donors (assume that all dopant is shallow).
Calculate the maximum resistivity, the corresponding
electron and hole density and the doping density.

Solution
Since the mobility of electrons is larger than that of holes,
one expects the resistivity to initially decrease as acceptors
are added to intrinsic silicon. The maximum resistivity (or
minimum conductivity) is obtained from:

do  d(np,+puy) .,

2
d <n Wy + i ”p/n>

dn dn dn

=0



Which yields,

n=n; ,% =0.57n; =5.7x10°cm™3
n

The corresponding hole density equals
p=176n=1.76x 10°cm=3

And the amount of acceptors one needs to add equals
Na=1.20 ni =1.20 x 10° cm?3,

The maximum resistivity equals:

1 1
p = -
" g, tom,)  qni(p, +up)
1
1.6 x 1071 x 1019(1400 + 450) e
Problem (6)

The electron density in silicon at room temperature is twice
the intrinsic density. Calculate the hole density, the donor
density and the Fermi energy relative to the intrinsic energy.
Repeat forn =5nijand n =10 ni. Also repeatforp=2ni,p=5
ni and p = 10 nj, calculating the electron and acceptor density
as well as the Fermi energy relative to the intrinsic energy
level.

Solution:
The hole density is obtained using the mass action law:
p = ni?/n
The doping density is obtained by requiring charge neutrality
Nd-Na=n-p
The Fermi energy is obtained from:
Er - Ei = kT In(n/nj)
yielding:
n=2n; n=>5n n=10n;
p ni/2 n; /5 ni/10
Nd - Na 1.5 n; 4.8 n 9.9 n;



EF-Ei  kTIn@2  kTIn(G) KT In(10)

p=2n p=5n, p =10 ni
n n; /2 n; /5 ni /10
Nd - Na -1.5 n; -4.8 n; -9.9 n;

EF-Ei  -kTIn@) -kTIn(G)  -kT In(10)

Exercise 7

A sample of Ge at 300 K is doped with 3 x 102//m?3 of donor
atoms and 4 x 10%Y/m® acceptor atoms. Find the densities of
electrons and holes at 300 K.

(answer, n =5.76 x 10¥//m3, p = 10%Y/m?3)

Problem (8)

(@) The lattice constant of GaAs is 5.65 A, Determine the
number of Ga atoms and As atoms per cm3. (b) Determine
the volume density of germanium atoms in a germanium
semiconductor. The lattice constant of germanium is 5.65 A.

Solution:
(@) 4 Gaatoms per unit cell Density=

(5.65 x 10~8)°
Density of Ga=2.22x10%°2cm™ 4 As atoms per unit cell, so that
Density of As=2.22x10%°cm™3

(b) 8 Ge atoms per unit cell Density=
— Density of Ge=4.44%x10%°cm™3

8
(5.65 x 10-8)°

Problem (9)
Calculate the density of valence electrons in silicon.

Solution:
Density or silicon atoms= 5x10?2cm™ and 4 valence electrons
per atom,
So Density of Valence electrons = 4 x 5x10%°cm™= 2 X
10%3cm™3



Problem 10

(a) Determine the amount (in grams) of boron (B) that,
substitution ally incorporated into 1 kg of germanium (Ge),
will establish a charge carrier density of 3.091 x 10/cm3.

(b) Draw a schematic energy band diagram for this material,
and label all critical features.

Solution
(a) The periodic table gives the molar volume of Ge as 13.57

cm3 and 1 mole of Ge weighs 72.61 g, so set up the ratio
72.61 1000 g

13.57  «x
and solve for x to get 187.30 cm?3 for the total volume.
The addition of boron gives 1 charge carrier/B atom.
B concentration in Si must be 3.091 x 10 B/cm?3
Na of B atoms weighs 10.81 g




17
- 3.091 x 10'7 B atoms weigh = 2219 _ 1 10.81 =

6.02 x 1023
5.55x10%g
=~ for every 1 cm? of Ge, add 5.55x 10% g

for 1E7W x555x10°%=1.04x 103gB

Conduction band

=R B o B* 3.091X10''B ions in the band
Acceptor level for B

Valance band3.091X10holes in the V.B

Problem (11)
The number of electron-hole pairs in intrinsic germanium (Ge) is



given by: n; = 9.7 x 1015T"/2¢ o/, k1™ (E, = 0.72 eV)
Tn; =9. g =0.

(@) What is the density of pairs at T = 20°C?
(b) Will undoped Ge be a good conductor at 200°C? If so, why?

Solution
(@) Recall: T in thermally activated processes is the absolute
temperature: T °K = (273.16 + t °C); Boltzmann’s constant = k =
1.38 x 10722 J/oK

T =293.16K:

n; = 9.7 x 10'° x (293. 16)3/23 /2 x138x10-23 x293.16°™
=9.7x10x5019x6.6 x 1077 = 3.21x 103/ cm3

-072x1.6x10°19 3

(b) 200 °C = 473.16 K

3, —-072x1.6x10"1° 3
n; =9.7 x 105 x (473.16) 2e /2 x138 %1023 x473.16°™

=97x10%x1,03x 10*x1.47x107* =1.47 x 10'%/ cm?3

The number of conducting electrons (in the conduction band) at
200°C is by about five orders of magnitude less than that of a good
conductor. The material will not be a good conductor. (There are
additional factors which contribute to the relatively poor conductivity
of Ge at this temperature.)

Problem (12)

Band gap of Si depends on the temperature as
2

E. =1.17eV—-4.73x10%—
g V-4 73210 T e36

Find a concentration of electrons in the conduction band of intrinsic
(un doped) Si at T =77 K if at 300 K n; = 1.05x10%° cm™3,

Solution:

Eq th
ﬁ) ,therefore



Eg (TZ) + Eg (Tl)
2KT, 2KT,

n;(T;) = n; (T1)3/2exp <_

Putting the proper values in the formula we obtain that ni(77K) =
1072%cm™3,

Problem (13)

(&) Assume the mobility ratio pn / gp = b in Si is a constant
independent of impurity concentration. Find the maximum
resistivity p, in terms of the intrinsic resistivity pi at 300 K. If
b = 3 and the hole mobility of intrinsic Si is 450 cm?/V-s,
calculate pi and pn.

(b) Find the electron and hole concentration, mobility, and
resistivity of a GaAs sample at 300 K with 5X10%® zinc
atoms/cm3, 10Y sulfur atoms/cm3, and 10! carbon
atoms/cms.

Problem (14)

Consider a compensated n-type silicon at T= 300 K, with a
conductivity of o= 16 S/cm and an acceptor doping
concentration of 10'7cm-=3. Determine the donor concentration
and the electron mobility. (A compensated semiconductor is
one that contains both donor and acceptor impurity atoms in
the same region.)

Exercise (2)

For a two band model of silicon, the band gap is 1.11 eV.
Taking the effective masses of electrons and holes as me =
1.08 mo and mn = 0.81 m, , calculate the intrinsic carrier
concentration in silicon at 300 K. (KT=0.026 eV)

Solution:
Applying the equation
1(2 KT>3/2

n;, = —
L 1T h?

Z (memy) /1 2k (D)




Then,

3
1,2 x0.026\ /2 3 111
n; = Z(m) (1.08m,x0.81m,) /se /0.026
=1.2x10'%m3

Example (4) Carrier Concentrations
What is the hole concentration in an N-type semiconductor with 10*°cm-
3 of donors? (ni is a strong function of Eg and T according to Eq. n; =

~-E

NN e 2kt , but is independent of the dopant concentration. nj at room
temperature is roughly 10*°%m= for Si and 10’cm= for GaAs, which has a
larger band gap than Si. For silicon, the np product is therefore 10?°°%cm=°
regardless of the conductivity type (P type or N type) and the dopant
concentrations).

Solution: For each ionized donor, an electron is created.
Therefore, n = 10%cm—3.

n? 10*°¢cm™3

_ _ 405 =3
P= n 10B5¢em=3 10%em

With a modest temperature increase of 60°C, n remains the
same at 10%cm-3, while p increases by about a factor of 2300
because ni? increases according to Eq.

- E
n, = JN,Nye |2kt
Example (5)

What is n if p = 10¥’cm=3 in a P-type silicon wafer?

Solution:

n? 10*%cm3 N
n= ?z 1017 cm =3 = 10°cm

Part (5) Solved PROBLEMS



The Concept of Mobility , FIELD DEPENDENCE

Problem 2.28 —(1)

Electrons in silicon carbide have a mobility of 1000 cm?/V-
sec. At what value of the electric field do the electrons reach
a velocity of 3 x 107 cm/s? Assume that the mobility is
constant and independent of the electric field. What voltage
Is required to obtain this field in a 5 micron thick region?
How much time do the electrons need to cross the 5 micron
thick region?

Solution:
The electric field is obtained from the mobility and the
velocity:

u 1400

- — 30 kV
€= 37T 3x107 /em

Combined with the length one finds the applied voltage.
V=€L=30,000x5x104=15V

The transit time equals the length divided by the velocity:
tr=L/V =5x10%4/3 x 10" =16.7 ps

1 Thermal Velocity

EXAMPLE 2

What are the approximate thermal velocities of electrons and holes in
silicon at room temperature?

SOLUTION:
Assume T = 300 K and recall mn = 0.26 mo.
1
Kinetic energy = = my, Vi = 5 KT
3K [(3x138x10-22 7/ 00K o1x10-31k v
Ven = m_[(x' * K)x<o.26x'x g)]

=23xm® M/, =23x107 M/,



Note that 1 J = 1 kg-ma/s.. Using mp = 0.39 mo instead of m,, one would
find the hole thermal velocity to be 2.2 x 10’cm/s. So, the typical thermal
velocity of electrons and holes is 2.5 x 10’cm/s, which is about 1000 times
slower than the speed of light and 100 times faster than the sonic speed.

Part (6) Solved PROBLEMS
complete ionization

8. Find Debye length in p-type Ge at 300 K if Na = 10 cm™.
Assume that all acceptors are ionized, € = 16.

Solution: (1.8)
Lo =0.48 pm.

Example 2.5

Calculate the ionization energy for shallow donors and
acceptors in germanium and silicon using the hydrogen-like
model.

Solution

Using the effective mass for conductivity calculations
(Appendix 3) one finds the ionization energy for shallow
donors in germanium to be:

Mynd 0.12
eV =13.6 —— eV = 6.4 meV
meye? (16)2

The calculated ionization energies for donors and acceptors
In germanium and silicon are provided below.

EC_ ED = 136

Germanium Silicon
donors 6.4 meV 13.8 meV
acceptors 11.2 meV 20.5 meV

Note that the actual ionization energies differ from this value
and depend on the actual donor atom



Example (1)

A Si sample is doped with 10% atomic% of P donors. Assuming
complete ionization of donors at room temperature, calculate the
charge carrier concentration and conductivity at room temperature.
[For Si: p= 2330 kg m3, atomic weight = 28, pe= 0.15 m?v-s?t, y,=0.05
m2V-1s?t ni= 1.5x10%carriers per cm?]

Solution:
1) Calculate the fraction of donor atoms (phosphorus atoms per
silicon atom) where Nsi—number of Si atoms per unit volume

N
—2 =106
-y e NSi -
Calculate the number of silicon atoms per unit volume
p 2330 kgm3

x 6 x10%3 atoms.mol™1

Nsi = A_SixNA”"g“d“’ ~ 28x1073 kg mol1
= 5x102%8 Si — atom m?
3) Calculate the number of donors atoms (phosphorus)
Np =5x10%2 p — atom m3

4) As Na=0 and Np>>n;, then we can safely assume that no=Npand pois
very small ~ zero
0=MN,XqXxHU,
o= (5x10%?p — atomm3) x (1.6 x1071°C) x (0. 15 m?V~1s71)
=1200Q 'm™!

Example (2)

A Si sample is doped with 10* atomic% of P donors.
Assuming complete ionisation of donors at room
temperature, calculate the charge carrier concentration and
conductivity at room temperature. [For Si: p = 2330 kg m,
atomic weight = 28, pe = 0.15 m?V-!s, Avogadro’s No= 6 x
1023]

Answer 1




N, _1p-
N

Si

Where Nsi— number of Si atoms per unit volume

Obtain Ns; from
Nsi = Resistivity x Avogadro’s No. / Atomic weight

\'N =L><6><1023
28x10°
No — 2330 6 x 1023
Si= 28x103 ~ %
This gives Nsi =5 x 10 m?3
So Ng =Nsi X 104 % =5 x 102¥ m=3 x 10

Ng = 5 x 10 m=,
Complete ionisation, n-type semiconductor:

So charge carrier concentration is
Nc=Ng=5x10%?m=3
(Neglect p,) , then Conductivity o
o = N¢e pe[hole contribution negligible]
So
6 =5x10%« 1.6 x 101% 0.15 Q'm1= 1200 Q*m™*

Example (6)
Find Debye length in p-type Ge at 300 K if Na = 10 cm™. Assume that
all acceptors are ionized, € = 16.

Solution:

Lo = 0.48 pm.

9. Calculate the ambipolar diffusion coefficient of intrinsic (un doped)
Ge at 300 K. pn/pp = 2.1, pn = 3900 cm? V™1s™,



Solution:
D = 65 cm?/s.

10. Holes are injected into n-type Ge so that at the sample surface Apo
= 10 cm™3. Calculate Ap at the distance of 4 mm from the surface if Tp
=10%s and Dp = 49 cm?/s.

Solution:

Ap = Ap, exp (— ) =1.6x103cm™3

pTp

Problem 2.20

The expression for the Bohr radius can also be applied to the
hydrogen-like atom consisting of an ionized donor and the
electron provided by the donor. Modify the expression for the
Bohr radius so that it applies to this hydrogen-like atom.
Calculate the resulting radius of an electron orbiting around
the ionized donor in silicon. (g, = 11.9 and pe* = 0.26 Lo)

Solution
The Bohr radius is obtained from:
€,h*n?
a, =
° pueq?

However, since the electron travel through silicon one has to
replace the permittivity of vacuum with the dielectric
constant of silicon and the free electron mass with the
effective mass for conductivity calculations so that:

€r

11.9
=529x — pm=2.42nm

a,, donor in silicon = a
° ° uipo 0.26

Example (1)

Complete lonization of the Dopant Atoms In a silicon sample
doped with 10¥cm~3 of phosphorus atoms, what fraction of the
donors are not ionized (i.e., what fraction are occupied by the



“extra” electrons)?

Solution:
First, assume that all the donors are ionized and each donor
donates an electron to the conduction band.
N =Np=10cm=3
From, previous example, ErF is located at 146 meV below E..
The donor level Eq is located at 45 meV below Ec for phosphorus
(see Table).

The probability that a donor is not ionized, i.e., the probability

that it is occupied by the “extra” electron, according to Eq. f(E) =
1 :

IS .
1+ e(E_EF)/KT, S

1

Probability of non — ionization =
1 (Ed_Ef)/

1+ /Ze KT

— 1 — 0

o 1 (146—45)meV/ =3.9%

1+ /Ze 26meV
(The factor 1/2 in the denominators stems from the

complication that a donor atom can hold an electron with upspin
or downspin. This increases the probability that donor state
occupied by an electron.) Therefore, it is reasonable to assume
complete ionization, i.e., n = Ng.

Ec 45m eV 146 m eV
Eb -
s it P
Ev

Location of EF and Eq4. Not to scale.



Part (7) Solved PROBLEMS

Effective masses and Fermi distribution Function
Problem (1)

Consider the general exponential expression for the concentration of
electrons in the CB, n= Ncexp —(E: —Er) /kT, and the mass action law,
np = ni.

What happens when the doping level is such that n approaches N¢
and exceeds it?

Can you still use the above expressions for n and p?

Consider an n-type Si that has been heavily doped and the electron
concentration in the CB is 10%° cm™3. Where is the Fermi level?

Can you use np = ni? to find the hole concentration?

What is its resistivity?

How does this compare with a typical metal?

What use is such a semiconductor?

Solution

Consider n = Ncexp[-(Ec = EF)/kT] (1)

and np=ni? (2)

These expressions have been derived using the Boltzmann tail

(E > Er + afew KT) to the Fermi — Dirac (FD) function f(E) as in (in the
textbook).

Therefore, the expressions are NOT valid when the Fermi level is
within a few KT of E..

In these cases, we need to consider the behavior of the FD function
f(E) rather than its tail and the expressions for n and p are
complicated.

It is helpful to put the 10° cm™ doping level into perspective by
considering the number of atoms per unit volume (atomic
concentration, nsj) ,in the Si crystal:

Nat = (Density)Na / Mat

= (2.33x10° kg m=)(6.022x10% mol™t) (28.09 x10° kg mol )

i.e.

Nat = 4.995 x 1022 m= or 4.995 x 102> cm™3

Given that the electron concentration n = 10%° cm™ (not necessarily
the donor concentration!), we see that

n/Na = (10%° cm=3) / (4.995 x 10?2 cm) = 0.00200



which means that if all donors could be ionized we would need 1 in
500 doping or 0.2% donor doping in the semiconductor (n is not
exactly Nqg for degenerate semiconductors). We cannot use Equation
(1) to find the position of Er. The Fermi level will be in the conduction
band. The semiconductor is degenerate (see Figure 5Q7-1).

EFn 5

EC o o o EC

EV VB EV
EFp o) 0

(a) Degenerate n-type semiconductor. Large number of donors form a
band that overlaps the CB.
(b) Degenerate p-type semiconductor.

Drift

m 2000

O \

B 1000

I

L

I

T 100

y

(cm®* 50

vt 1015 1016 1017 1018 1010 102
s%) Dopant concentration (cm®)

The variation of the drift mobility with dopant concentration in Si for
electrons and holes at 300 K.
Take T =300 K, and pe =900 cm? V! st from Figure.
The resistivity is p =1/(en pe)
= 1/[(1.602 x 1071° C)(10%° cm3)(900 cm? V1 s1)]
. Pp=6.94%x10°Qcmor694 x10'Qm



Compare this with a metal alloy such as nichrome which has
Pp=1000NQM=10%x10"Q m.

The difference is only about a factor of 70.

This degenerate semiconductor behaves almost like a “metal”.
Heavily doped degenerate semiconductors are used in various MOS
(metal- oxide- semiconductor) devices where they serve as the gate
electrode (substituting for a metal) or interconnect lines.

Problem (2)

Gold in Si has two energy levels in the band gap: Ec - Ea =
0.54 eV, Ep — EF = 0.29 eV. Assume the third level Ep— Er =
0.35 eV is inactive. (a) What will be the state of charge of the
gold levels in Si doped with high concentration of boron
atoms? Why?

(b) What is the effect of gold on electron and hole
concentrations?

Problem (3)

For an n-type silicon sample doped with 2.86x 10'cm-
phosphorous atoms, find the ratio of the neutral to ionized
donors at 300 K. (Ec - Ep) = 0.045 eV.

Example (9)
Show that
Ep— Ep\1*
N}, = Np ll + 2 exp (u)]

KT
[Hint: The probability of occupancy is

F (E) = ll +§ exp (E_ EF)]_l

KT

where h is the number of electrons that can physically
occupy the level E, and g is the number of electrons that can
be accepted by the level, also called the ground-state
degeneracy of the donor impurity level (g = 2).]



PrOblem (7)

1. (a) Derive an expression for the total number of states in a
semiconductor material (per unit volume) between Ec: and
Ec + kT, where Ec is the conduction band edge (bottom of
the conduction band), k is Boltzmann’s constant and T is
the temperature. by integrating the density of states over
the energy range given in this problem.

Solution: The density of states represents the number of
states per unit volume. For this problem, we simply need
to integrate the density of states, g(E)
3
1 2mi\ /2
9(E) = 2n2< hZ ) E-E

From Ecto Ec + KT

E.+KT 1 2m 3/) E.+KT y
E) dE = ( ) j E— E,.) 2dE
| eemar= 5 (GE) [ @

3
1 (2m2> /ZJKTxl/z i
0

22\ h?

3
1 2m;\ /22 3
— — 2
211'2<h2) 3(KT)

. 3/,
1 [2m,kr
3 12 h?

3 3
(2
m, 3 12 h?




For values of,

mo =9.11 x 1031 kg,

KT =0.026 x 1.6 x 101° J,
h=1.05x103%J.s

we find:

E.+KT
f ge(E)dE =1.97x10**m™3 = 1.97x10%¢cm™3
E.

(b) Evaluate the expression you derived in (a) for GaAs and
Si.

Solution: For GaAs, using me=0.067 mo, we find 3.41x10%’
cm~3. For Si, using me=1.08 mo, we find 2.21%x10%° cm~3,

Example (3)

Silicon crystal is doped with 5 x 10%°/m3 atoms per m3 . The
donor level is 0.05 eV from the edge of the conduction band.
Taking the band gap to be 1.12 eV, calculate the position of
the Fermi level at 200 K.

Solution

The intrinsic carrier concentration can be obtained from the
known carrier concentration in Si at 300 K. As the carrier
concentration at 300K is 1.5x10%%/m3, the carrier
concentration at 200 K is

3

200y /2

- 16 _ 16
(300) x1.5x10 0.82x10°°/m3

As the doping concentration is much larger than ni.we can
take,
n =~ Np=5x10%°/m3 thus
Ei — Ez =KTIn "/, =0.183 eV
Exercise (4)



Germanium has ionized acceptor density of4 x 10?1 /m?® and
donor density of 6 x 10%1/m3.Taking the band gap to be 0.67
eV, calculate the equilibrium density of majority and minority
carriers at 450 K and also the Fermi energy.

[Hint: Using the intrinsic concentration at 300 K, find nj at 450
K and use the expression for n]

Ans,n =2.02x 102/m3, p = 9.62 x 10Y7/m3, E} — EL = 0.143 eV

Problem (5)
2. Consider a silicon crystal whose band gap energy is Eg
=1.12 eV and whose temperature is kept at T=300-K.
(@) If the Fermi level, Et, is located in the middle of the band
gap, what is the probability of finding an electron (or
equivalently, the probability of a state being occupied) at E =
Ec + kT.

Solution: The probability is given by the Fermi-Dirac
function. Since Ef = Ec~Eg/2,

1
f(E) =

. (E— E, + Eg/z)/

As E =Ec + KT , wefind:
f(E.+KT) =

1

(7« Po12),

exp

1
= = exp (—22.6)

(0.026 + 0.56)
exp ( /0.026) +1
~1.53x10710




(b) If the Fermi level, Ef is located at the conduction band
edge, Er = Ec, what the probability of finding an electron at E
= Ec + kT.

Solution: The probability is given by evaluating the Fermi-
Dirac probability density, with Ef = Ec

1
F(E) = oxp [(E— EC)/KT] +1

With E = Ec + kT we find,

1
F(E.+ KT) = =~ (0.27
(Ec +KT) exp (1) +1

Problem (6)

The equilibrium electron concentration is given by the
product of the density of states and the probability function,
n(E) = gc (E) F(E). If E —=Er>> KT, the Fermi-Dirac probability
function can be approximated with the Maxwell-Boltzmann
function

f(E) =

1 ~ _(E— Ep)
exp [(E - EF)/KT] 1 o [ /KT]

(a) Using this approximation, find the energy relative to
the conduction band edge, E-E., at which the electron
concentration becomes maximum.

Solution:
The electron density, n(E) = g(E)f(E), can be written in the
form

n (x) = constant xJx exp (—x)

Where x = (E-Ec)/kT, for purposes of finding the maxima.
Taking the derivative and setting equal to zero



dn (x) 1 _
I, — constant x <ﬁ — \/E) exp (—x) =0

We find that the distribution peaks at E —E. = kT/2.

(b) Using this approximation, calculate the electron
concentration per unit energy interval (in units of cm= eV™)
in silicon at energy E = Ec =kT. Assume the Fermi level is
located at the center of the band gap, ErF = Ec —=Eg/2.

Solution: We want to evaluate

n(E) = g(E)f(E)
1 (2 m2>
-~ 2m2\ h?
at E = Ec + KT for Ef = g4/2.

The result is n(Ec + kT) = g(E)f(E)
n (E) = g(E)f(E)

1 (2 m2>3/2 VKT exp |- ( KT + Eg/z)/KT

3/2

V(E— E )exp [_ (E - EF)/KT]

~ 2m2\ R2
n(E) = g(E)ng)
1 2m /2
_ 2n2< ’:;' ) 0.026 exp [_ (0.026 + 0.56)/0-026]

=1.84x 101 cm3ev1!
Repeat the calculation in (b) without wusing the
approximation.

Solution: The answer is really close, to within a part in
roughly 10719,

Problem (7)
If a silicon sample is doped with 10'® phosphorous



impurities/cm3, find the ionized donor density at 77 K.
Assume that the ionization energy for phosphorous donor
impurities and the electron effective mass are independent of
temperature. (Hint: First select a N*p value to calculate the
Fermi level, then find the corresponding N*p . If they don’t
agree, select another N*p value and repeat the process until a
consistent N*p is obtained.)

Problem (8)

Using graphic method to determine the Fermi level for a
boron-doped silicon sample with an impurity concentration
of 101> cm=3 at 300 K (note nj = 9.65x10%crn-3).

Problem (9)
The Fermi-Dirac distribution function is given by

1
FB=— oo EE)
The differentiation of F(E) with respect to energy is F’(E).
Find the width of F’(E), i.e., 2 [E (atFp,,) — E (at%Fmax)],
where F,,,, is the maximum value of F‘(E).

Problem (10)

Find the position of the Fermi level with respect to the
bottom of the conduction band (Ec— EF) for a silicon sample
at 300 K, which is doped with 2x 10°%m- fully ionized
donors.

Problem (11)

The Gamma Function is defined as
n

r'(n) = J x" 1 exp (—x) dx
(a) Find I'(1/2), and (b) shgw that '(n) =(n - DI(n - 1).



Example 1.5
Calculate the energy relative to the Fermi energy for which
the Fermi function equals 5%. Write the answer in units of kT.

Solution:
The problems states that

1
f (E) = —5~ = 0.05
1+ exp ( KTF)
Which can be solved yielding?
E— Er=In(19) KT = 3 KT

Problem 1.9

Prove that the probability of occupying an energy level below
the Fermi energy equals the probability that an energy level
above the Fermi energy and equally far away from the Fermi
energy is not occupied.

Solution
The probability that an energy level with energy AE below the
Fermi energy Er is occupied can be rewritten as:

AE
1 exp —
f(Ep— AE) = Ep— AE—Ep AE
1+ exp T Xp E +1
=1 1 1 1
=+ AE =+ Ep+AE- Ef
exp +1 1+exp o7

=1— f(EF+AE)
so that it also equals the probability that an energy level with
energy AE above the Fermi energy, Er, is not occupied.

Problem 2.3



Prove that the probability of occupying an energy level below
the Fermi energy equals the probability that an energy level
above the Fermi energy and equally far away from the Fermi
energy is not occupied.

Solution
The probability that an energy level with energy AE below the
Fermi energy ErF is occupied can be rewritten as

AE
1 exp —
f (Ep AE) = 1 Ep— AE— Ep AEKT 1
. + exp —fT exp ﬁ-l_
=1- =1- =1—-f(Erp+ AE)
AE Ep— AE— Ef
exp ——+ 1 1+exp —r

so that it also equals the probability that an energy level with
energy AE above the Fermi energy, Er, is not occupied.

Problem 2.4 At what energy (in units of kT) is the Fermi
function within 1 % of the Maxwell-Boltzmann distribution
function? What is the corresponding probability of
occupancy?

Solution

The Fermi function can be approximated by the
MaxwellBoltzmann distribution function with an approximate
error of 1 % if

— 1 1.01
me fFB=0.0101" _

fFD fFD me

using X = (E - Er)/KT,
this condition can be rewritten as:

1+ exp (x) =1.01 exp(x)
from which one finds
X =1n(100) = 4.605
so that
E =Er+4.605 KT




and feo(EF + 4.605 kT) = 0.0099

Problem 2.5

Calculate the Fermi function at 6.5eVif EF=6.25eVand T =
300 K. Repeat at T = 950 K assuming that the Fermi energy
does not change. At what temperature does the probability
that an energy level at E =5.95 eV is empty equal 1 %.

Solution The Fermi function at 300 K equals:

1
f(6.25eV) = =6.29x107°

6.5-6.25
1+ exp ( 0.0258 )

The Fermi function at 950 K equals:

1
f(6.25 eV) = = 0.045

6.5-6.25
1+ exp ( 0.0818 )

The probability that the Fermi function equals 1 % implies:
1
f(5.95eV) =0.99 =

1+ exp (5.95—6.25)

KT/
- - q
resulting in

0.3 1
T = K —484.70,

In (r;g— 1)

Example 2.7
A piece of germanium doped with 10'% cm-3 shallow donors is
illuminated with light generating 10 cm=3 excess electrons



and holes. Calculate the quasi-Fermi energies relative to the
intrinsic energy and compare it to the Fermi energy in the
absence of illumination.

Solution
The carrier densities when illuminating the semiconductor
are: -
n=n,+dn= 101°+ 10 =1.1x10% cm=3
p=p,+dp= 10 cm3
and the quasi-Fermi energies are:
11.1 x 1016

n
F,— E;,=KTIln —=0.0259x1 =163 |74
n i nni xin leoii me
n x10
Fp—Ei=KTln;i=0.0259xlnm=101meV

In comparison, the Fermi energy in the absence of light

equals
1016

n,
FF_ Ei=KTlnE=O.0259xlnm= 161 meV

which is very close to the quasi-Fermi energy of the majority
carriers.

Problem 2.8

Calculate the position of the intrinsic energy level relative to
the midgap energy Eemid gap = (Ec + Ev)/2 in germanium, silicon
and gallium arsenide at 300 K. Repeat at T = 100 °C.

Solution:
The intrinsic energy level relative to the midgap energy is
obtained from:

*

my
m,
where the effective masses are the effective masses for
density of states calculations as listed in the table below. The

3
Ei = Emidgap = Z KT In



corresponding values of the intrinsic level relative to the
midgap energy are listed as well.

45.92 meV Germanium Silicon Gallium arsenide
Mme*/mo 0.55 1.08 0.067

mn*/Mo 0.37 0.81 0.45

T =300 K 7.68 meV 5.58 meV |36.91 meV
T=100C 9.56 meV 6.94 meV |45.92 meV
Problem 2.9

Calculate the electron and hole density in germanium, silicon
and gallium arsenide if the Fermi energy is 0.3 eV above the
intrinsic energy level. Repeat if the Fermi energy is 0.3 eV
below the conduction band edge. Assume that T = 300 K.

Solution
The electron density, n, can be calculated from the Fermi
energy using:

Ep— E; 0.3
n=niexp—=niexp< )

KT 0.0258
and the corresponding hole density equals
_n
P= n

the resulting values are listed in the table below.

If the Fermi energy is 0.3 eV below the conduction band
edge, one obtains the carrier densities using:

_ N EF—EC_N ( 0.3 )
= M€ T = NP (g 0258
and the corresponding hole density equals:

2
p=11
n

the resulting values are listed in the table below.

Germanium Silicon Gallium
Arsenide




ni (cm-3) 2.03x 1013 |1.45x 1010 |2.03x 106
Nc (cm-3) [ 1.02 x 1019 6.62 x 1019 [4.37 x 1017
EF - Ei n (cm- 2.24 x 1018 1.60 x 1015 |2.23x 1011
=0.3eV p(cm-3) |1.48x108 1.32 x 105 18.4
EF - Ei n(cm-3) ]9.27 x 1013 6.02 x 1014 |3.97 x 1012
=-0.3eV p(cm-3) |4.45x1012 3.50 x 105 1.04
Problem 2.10

The equations

N} — N Ni — Nz\°
o, [

2 2

N; — N} N; — N3\
Po= —5 J(Td> +nf

are only valid for non-degenerate semiconductors (i.e. Ev +
3kT < Er<Ec - 3kT). Where exactly in the derivation was the
assumption made that the semiconductor is non-
degenerate?

Solution

The above two Equations were derived using charge
neutrality and the mass action law. Of those two
assumptions, the use of the mass action law implies that the
semiconductor is nondegenerate.

The mass action law was

©°8mwV2 .3 (Ep—E) (Ep—Ec)
n, = j M /2 [E=FE.e & dE= N,e i
E,
2 . KT /2
NCZZ( h2 )

These equations, representing a closed form solution for the
thermal equilibrium carrier densities as a function of the



Fermi energy, were in turn obtained by solving the Fermi
integral and assuming that:

Ev + 3KT < Er<Ec - 3kT
i.e. that the Fermi energy must be at least 3kT away from
either bandedge and within the bandgap.
Problem 2.31
Find the equilibrium electron and hole concentrations and
the location of the Fermi energy relative to the intrinsic
energy in silicon at 27 °C, if the silicon contains the following
concentrations of shallow dopants.
a) 1 x 10'% cm= boron atoms
b) 3 x 10 cm= arsenic atoms and 2.9 x 10 cm- boron
atoms.

Solution

a) Boron atoms are acceptors, therefore Na = 1016 cm-3 Since
these are shallow acceptors and the material is not
compensated, degenerate or close to intrinsic, the hole
density equals the acceptor density: p = 10 cm=3 Using the
mass action law we then find the electron density n = n?i/p =

1 x 10* cm= The Fermi energy is then obtained from:
10*

n
Er —E; =KT In E = 0.0259 In 1010 — —375 meV

b)

Arsenic atoms are donors, therefore Na = 2.9 x 10* cm- and
Nd = 3 x 10'® cm= Since these are shallow acceptors and the
material is not degenerate or close to intrinsic, the electron
density approximately equals the difference between the
donor and acceptor density n = Ng — Na = 101> cm=3 Using the
mass action law we then find the hole density p = n%/n =1 x

10° cm=3 The Fermi energy is then obtained from:
015

n
Er—E;=KTIn =0 0259 In 77 = 298 meV




Example (2) 1-2

Oxygen Concentration versus Altitude , We all know that there
IS less oxygen in the air at higher altitudes. What is the ratio of
the oxygen concentration at 10 km above sea level, Nn, to the
concentration at sea level, NO, assuming a constant temperature
of 0°C?

SOLUTION: There are fewer oxygen molecules at higher
altitudes because the gravitational potential energy of an oxygen
molecule at the higher altitude, En, is larger than at sea level, Eo.

According to Equation
—(E- EF)/
KT

f(E)~ e

N

_Eqy
N, e KT e_(Eh— EO/KT)

E
e O/KT

Eo —En is the potential energy difference, i.e., the energy needed
to lift an oxygen molecule from sea level to 10 km.
En Eo= altitude x weight of O2 molecule x acceleration of gravity
= 10* m x O2 molecular weight atomic mass unit x 9.8 m s
=10*m x 32 x1.66 x10%" kgx 9.8 m s?=5.2 x 1021 J

21
% = e " 13x10-10 J K 1x273 K= e 138 =0.25
0

Therefore, the oxygen concentration at 10 km is 25% of the sea
level concentration. This example and the sand-in-a-dish analogy
presented to demystify the concept of equilibrium, and to
emphasize that each electron energy state has a probability
occupied that governed by the Fermi function.

Example (3)
Finding the Fermi Level in Si Where is Er located in the energy
band of silicon, at 300K with n = 107cm~3? In addition, for p =



1014cm—3?

Solution:
From EqQ.

n= Nce_(Ec_EF)/KT
19
=0.0261n (28x107/ ) =0.146eV

Therefore, EF is located at 146 meV below Ec, as shown in
Figure. For p = 10%*cm=3, from Equation,

Er—E,=KT In (NV/p)

=0.026In (L4x107/ . )=031ev
Therefore, Er is located at 0.31 eV above E..

0.146 ! E.
Er 4
EFr 0.3}
Ev
¢
Example (1)

Complete lonization of the Dopant Atoms In a silicon sample
doped with 107cm~2 of phosphorus atoms, what fraction of the
donors are not ionized (i.e., what fraction are occupied by the
“extra” electrons)?

Solution:
First, assume that all the donors are ionized and each donor
donates an electron to the conduction band.
N =Np=10cm=3
From, previous example, EF is located at 146 meV below E.
The donor level Eq is located at 45 meV below Ec for phosphorus
(see Table).



The probability that a donor is not ionized, i.e., the probability

that it is occupied by the “extra” electron, according to Eq. f(E) =

1 .
s

1+ e(E_ EF)/KT
1

Probability of non — ionization =
1+ 1/ e(Ed_Ef)/KT
2
! 3.9 %
141 /2 e(146—45)mev/26mev 0
(The factor 1/2 in the denominators stems from the
complication that a donor atom can hold an electron with upspin
or downspin. This increases the probability that donor state
occupied by an electron.) Therefore, it is reasonable to assume
complete ionization, i.e., n = Ng.

Ec 45m eV 146 m eV
Eb e e
£ ZatIinos Z==
Ev

Location of EF and Eq4. Not to scale.

Part (8) Solved PROBLEMS

Energy: Density of States

Example 2.3

Calculate the number of states per unit energy in a 100 by
100 by 10 nm piece of silicon (m* = 1.08 mo) 100 meV above
the conduction band edge. Write the result in units of eV-1.



Solution
The density of states equals:

8p V2 .3
g(E) = ——m"2[E—E,
_ 8pVZ(1.08x9.1x10731) 72
B (6.626 x 10~ 34)2
=1.51 x10°6m=3j-1
So that the total number of states per unit energy equals
g(E)V=151x10°°x10"22]71 =241 x10%V!

J0.1x1.6x10°19

Example (7)
Derive the density of states in the conduction band as given
by Eq.

Zm 2 - E)Y2

d c

N (E)M, = € 3

(Hint: The wavelength A of a standing wave is related to the
length of the semiconductor L by vA = nx where nx is an
integer. The wavelength can be expressed by de Broglie

hypothesis A = h/px. Consider a three-dimensional cube of
side L)

Example (8)

10. Calculate the average kinetic energy of electrons in the
conduction band of an n-type non- degenerate
semiconductor. The density of states is given by Eq.

ﬁmZ{zz (E - Ec) 1/2

Exercise (1)
Derive the expression.



3
2 (E,- _
p= %(2 Zl,;fT) e(Ev EF)/KT _ Nv e(Ev ECF)/KT
For an intrinsic semiconductor the number of electrons in
the conduction band is equal to the number of holes in the
valence band since a hole is left in the valence band only
when an electron makes a transition to the conduction band,
n=p
Using this and assuming that the effective masses of the

electrons and holes are the same one gets,

Ep—E, E,— E
e( F )/kT _ e( F)/kT

Conduction Band

(o] (5] 0 0 (] [5)
M _ Ec
o Fermi Level
Q
<
0
Ev 0 o 0 ° o

Valance Band

Giving :
Ec.+ Ey
Er=——— (O
I.e. the Fermi level lies in the middle of the forbidden gap.
Note that there is no contradiction with the fact that no state
exists in the gap as is only an energy level and not a state.
By substituting the above expression for Fermi energy in(A)

or (B), ,
2 (Ep- _
1 (2 m, KT) e(Ep EC)/KT N, e(EF EC)/KT )

nzZ 1T h?



3
1 2 KT /2 v v— L¢
( mp ) e(E Er) kT — N, e(E Ecr) /xr (B)

pzZ 1T h?

We obtain an expression for the number density of electrons
or holes (n =p =ni)

3
1,2 KT\ /2 3, -
n; = Z(nhz) (m,my)/ae”"2k1 (D)

Where A is the width of the gap

Example 2.4

Calculate the effective densities of states in the conduction
and valence bands of germanium, silicon and gallium
arsenide at 300 K.

Solution
The effective density of states in the conduction band of
germanium equals:

2 pm; KT
NCZZ( e )
3

_, <2px0.55x9.11x10—31x1.38x10—22x300) /2

3/2

(6.626 x 10-34)2

=1.02x10®*m3=1.02x10Ycm3
where the effective mass for density of states was. Similarly,
one finds the effective density of states in the conduction
band for other semiconductors and the effective density of
states in the valence band:

Germanium | Silicon Gallium Arsenide
Nc (cm?) [1.02x 10¥ [2.81x 10*° |4.35x 107

Nv (cm3®) |5.64x10® |1.83x 10'° |7.57 x 10*®

Note that the effective density of states is temperature
dependent and can be obtain from:




T \/2
N,(T) = N,(300K) (m)

where N¢(300 K) is the effective density of states at 300 K.

Part (9) Solved PROBLEMS
Compounds

Problem (1)

Consider the GaAs crystal at 300 K.

a. Calculate the intrinsic conductivity and resistivity.

b. In a sample containing only 10 cm= ionized donors, where is the
Fermi level? What is the conductivity of the sample?

c. In a sample containing 10*® cm™ ionized donors and 9 x 10 cm™
lonized acceptors, what is the free hole concentration?

Solution:
a - Given temperature, T = 300 K, and intrinsic GaAs.
From Tables,
ni =1.8 x 106 cm™3, pye = 8500 cm? V! st and pn =400 cm? V1 s?,
Thus, o =eni( le + M)
~0 = (1.602 x 10*° C)(1.8 x 10° cm3)(8500 cm? V' s + 400 cm? V1 s?)
0 =257 x10°Qtcm?
~p=1/0=3.89 x108Q cm

B - Donors are

now introduced.

At room temperature, n = Ng = 10 cm=3>>n;>> p.

o n = eNgle=(1.602 x101° C)(10* cm3)(8500 cm? V1 s?) =1.36 Q' cm"
Lpn=1/0,=0.735Qcm

In the intrinsic sample,

EF = Eri, ni = Ncexp[—(Ec = Er)/KT] (1)

In the doped sample,



N =Ng, EF = E=, n = Ng = Ncexp[~(Ec = Ern)/kT] (2)

Eqgn. (2) divided by Eqgn. (1) gives,

Na/ni = exp (Er = Er)/ KT (3)

~AEF = Ern = Eri = KT In(Na/ni)  (4)

Substituting we find,

AEF = (8.617 x 107 eV/K)(300 K)In[(10*° cm3)/(1.8 x 10° cm3)]
~AEF = 0.521 eV above EFr (intrinsic Fermi level)

c The sample is further doped with Na =9 x 10" cm==0.9 x 10*®* cm™
acceptors. Due to compensation, the net effect is still an n-type
semiconductor but with an electron concentration given by,
N=Ng=Na=10®cm3=-0.9%x10®cm3=1x10%cm=2 (>>n)
The sample is still n-type though there are less electrons than before
due to the compensation effect. From the mass action law, the hole
concentration is:
p=n?/n=(1.8x10%cm3)?/(1x10*cm=3)=0.0324 cm?3
On average there are virtually no holes in 1 cm?® of sample. We can
also calculate the new conductivity. We note that electron scattering
now occurs from Na + N¢ number of ionized centers though we will
assume that
He = 8500 cm? V1 s,
o =en Je= (1.602 x 10'1° C)(10* cm=3)(8500 cm? V1s?)=0.136 Q1 cm?

Problem (2)

AIN and GaSb are compounds, solid at room temperature. On the
basis of bonding considerations and data provided in the periodic
table, attempt to predict differences in the properties of these solids.
Solution

Both compounds are of the llI-V family, which hybridize and form
“adamantine” (diamond-like) structures which places them into the
category of semiconductor.

AIN AEN = 1.43. The covalent radii of the constituents are small and,
combined with the large EN, the bonds (polar covalence’s) are very
strong — the semiconductor is expected to exhibit a large band gap
(likely transparent).

GaSb AEN = 0.24. The covalent radii of both constituents are
significantly larger (than those of AIN), the ionic contribution to
bonding is small — the semiconductor is expected to exhibit a much
smaller band gap than AIN.

AIN: Eg = 3.8 eV ,GaSh: Eg =0.8 eV



Problem (4)
Calculate thermal velocity of electrons and holes in GaAs at room
temperature. Effective masses are m*./mo = 0.063 and m*»/mo = 0.53.
Solution:

%) _ * 202
B fo v exp ( mv /ZKT)dBV_ 8KT
- 0 _ %292 - *

fo exp ( m*v /ZKT) d3 v Tm

Thermal velocities of electrons and holes are 4.3x10° and 1.5x10’
cm/s, respectively.

Uy

Part (10) Solved PROBLEMS
Transparent Semiconductors

1. Which of the following semiconductors are transparent,
partially transparent, nontransparent for visible light (A = 0.4
— 0.7 ym): Si, GaAs, GaP, and GaN?

Solution: (1.1)

1. It follows from Table 2 that Si and GaAs are not
transparent, GaP is partially transparent, and GaN is
transparent for the visible light.

Problem (3)

1. Which of the following semiconductors are transparent, partially
transparent, non transparent for visible light (A = 0.4-0.7 um): Si,
GaAs, GaP, and GaN?

Solution:
1. It follows from Table 2 that Si and GaAs are not transparent, GaP is
partially transparent, and GaN is transparent for the visible light.



Example (1) Measuring the Band-Gap Energy if a
semiconductor is transparent to light with a wavelength longer
than 0.87 um, what is its band-gap energy?

SOLUTION: Photon energy of light with 0.87 um wavelength is,
with ¢ being the speed of light
c 6.63x1073%(j.s)x3x108m/s
hv=h-=
A 0.87 um
~1.99x107" jum
- 0.87 ym
1.99x 1071 eV um

1.6 x10719x0.87 um

1.24 eV um
= =1.42 eV
0.87 um

Therefore, the band gap of the semiconductor is 1.42 eV. The
semiconductor is perhaps GaAs (Table).

Band-gap energies of selected semiconductors.
Semiconductor|InSb | Ge | Si GaAs | GaP | ZnSe | Diamong
Eg (eV) 0.18 |0.67(1.12 |1.42 |2.25|2.7 6.0




Part (11) Solved PROBLEMS
THE DRIFT CURRENT , THE DIFFUSION CURRENT

Example 1.5

Calculate the built-in potential barrier of a pn junction. Consider a
silicon pn junction at T = 300 K, doped at Na =10 cm~in the p-region
and Ng = 10Ycm™3in the n-region.

Solution:
We have ni = 1.5 x 10¥%m™ for silicon at room temperature. We then
find

Ngny
Vi = Vrln (—2) = 0.0261In

1016x 1017

n; (1.5x1010)2

Comment: Because of the log function, the magnitude of Vyiis not a

strong function of the doping concentrations. Therefore, the value of

Vpi for silicon pn junctions is usually within 0.1 to 0.2 V of this
calculated value.

]=0.757V

Exercise 1.5

Calculate Vypi for a GaAs pn junction at T = 300 K for Na = 10 cm™ and
Ng = 10" cm™ (b) Repeat part (a) for a Germanium pn junction with the
same doping concentrations.

Solution: (a) Vbi = 1.23 V, (b) Vbi = 0.374 V).

Example 2.10

The hole density in an n-type silicon wafer (N¢ = 107 cm™)
decreases linearly from 10 cm= to 10'® cm™ between x = 0
and x =1 um. Calculate the hole diffusion current density.

Solution
The hole diffusion current density equals:
dp 10 9x10"3 )
Jp = quE= 1.6x10 x8.2x W= 1.184A/m



D, = Vgm, = 0.0259 x 317 = 8.2 M/
and the hole mobility in the n-type wafer was obtained from
Table as the hole mobility in a p-type material with the same
doping density.

Problem 2.18

Consider the problem of finding the doping density, which
results in the maximum possible resistivity of silicon at room
temperature. (ni = 10°°cm=3, pun = 1400 cm?/V-sec and pp = 450
cm?/V-sec.) Should the silicon be doped at all or do you
expect the maximum resistivity when dopants are added? If
the silicon should be doped, should it be doped with
acceptors or donors (assume that all dopant is shallow).
Calculate the maximum resistivity, the corresponding
electron and hole density and the doping density.

Solution

Since the mobility of electrons is larger than that of holes,
one expects the resistivity to initially decrease as acceptors
are added to intrinsic silicon. The maximum resistivity (or
minimum conductivity) is obtained from:

n}
ds d(nun+pup)_ ‘ d (n”n+7”p)

dn 1 dn dn
which yields:

n= ’&ni =0.57n; =5.7x10°cm™3
Un

The corresponding hole density equals p = 1.76 ni = 1.76 X
10° cm=2 and the amount of acceptors one needs to add
equals Na = 1.20 ni = 1.20 x 10° cm3. The maximum resistivity
equals:

=0

1
q(np,+pp,) qmnx1587

pmax -

=394 KO cm




Problem 2.30

Phosphorous donor atoms with a concentration of 10 cm-

are added to a piece of silicon. Assume that the

phosphorous atoms are distributed homogeneously

throughout the silicon. The atomic weight of phosphorous is

31.

a) What is the sample resistivity at 300 K?

b) What proportion by weight does the donor impurity

comprise? The density of silicon is 2.33 gram/cm?3.

c) If 107 atoms cm=3 of boron are included in addition to

phosphorous, and distributed uniformly, what is the resulting

resistivity and type (i.e., p- or n-type material)?

d) Sketch the energy-band diagram under the condition of
part ¢c) and show the position of the Fermi energy relative
to the valence band edge.

Solution
a) The electron mobility in the silicon equals
— ; 1414 — 68.5
Hn = Hmax T Hmax I"n;m =68.5 + 16 <0711
1+ (ﬂ> 1+ (5.—%)
N, 9.2 x 1016
= 1184 cm?/vs
1 1 B 1
P s Y(npn+pp,) 1.6x10°1 x1184x10%°
=0.53Qcm

b)



weight

volumel,  MnuANg;  31x1.6x10%7 x10° x10'®
weight ~ density of si 2928
volumelp g
=2.1x1077

C)
The semiconductor is p-type since Na>Ng The hole density is
obtained from:

N} — Ny N} — N7\’
P=“Td+J(“Td> +

9 x 1016 9 x 1016\°
= + j<T> + (10192 =9 x 101%cm 3

and the mobility is calculated from the sum of the donor and

acceptor densities
— ; 470.5 — 44.9
Hp = Hmin T Fmax = Bmin _ 44.9 + 0.711

a
N 11x 1016
1+ (N_p> 1+ (2.23x1017)
= 310.6 cm?/vs
leading to the conductivity of the material:

1 1 1
P s T q(npntpp,) 16x107°x310.6x9x 1016
=0.22Qcm
d)
N, 1014
Ep— B, = KT In —% = 0.0259 In 0 = 123 meV
Problem 2.32

The electron concentration in a piece of lightly doped, n-type
silicon at room temperature varies linearly from 10 cm= at x
=0to 6 x 10 cm=3at x =2 um. Electrons are supplied to keep
this concentration constant with time. Calculate the electron
current density in the silicon if no electric field is present.



Assume pnh = 1000 cm?/V-s and T = 300 K.

Solution
The diffusion current is obtained from:

gD, 1 6x10 1 x25.8x 206X 107
]n_q ndx_ 00X x -0 X 2x10—4

= 828 A/m?

where the diffusion constant Dn is obtained from:

Dn = pn X Vit = 1000 x 0.0258 = 25.8 cm?
Example 4.1
An abrupt silicon p-n junction consists of a p-type region
containing 2 x 10'% cm= acceptors and an n-type region
containing also 101 cm= acceptors in addition to 1017 cm=3
donors.
a. Calculate the thermal equilibrium density of electrons and
holes in the p-type region as well as both densities in the n-
type region.
b. Calculate the built-in potential of the p-n junction.
c. Calculate the built-in potential of the p-n junction at 400 K.

Solution a.
The thermal equilibrium densities are:
In the p-type region:

n; 1020

p=N,=2x10%cm™3 ,n= p‘ = 5 =706~ 5% 103cm™3

In the n-type region
o s n; 1020
n = Nd—Na=9x10 cm ,p=7=m
=1.11x103cm™3
b. The built-in potential is obtained from
PpNy 2 x101° x9 x 1016
fi=V:in 7= 0.0259 In 1020 =0.79V

4
c. Similarly, the built-in potential at 400 K equals



Pyl 0 0345 1 2 x 1016 x 9 x 1016 063V
nz " T @s2x102z

i

where the intrinsic carrier density at 400 K was obtained from
Example 2.4 b.

Example 1.4

Calculate the diffusion current density for a given semiconductor.
Consider silicon at T = 300 K. Assume the electron concentration
varies linearly from n = 10* cm™ to n = 10'® cm™ over the distance
from x =0 to x = 3 pm. Assume D, = 35 cm?/s.

We have

dn An 10 1012 — 10%¢ A
J=eD,—=eD,—=1.6x10 x35x 0_3x10-% =187 /mz

" dx A X
Comment: Diffusion current densities on the order of a few hundred
amperes per square centimeter can also be generated in a
semiconductor.

Exercise 1.4

Consider silicon at T = 300 K. Assume the hole concentration is given
by p = 10%e™/Lp (cm™), where L, = 10 cm. Calculate the hole
diffusion current density at (a) x = 0 and (b) x = 103cm. Assume Dp =
10 cm?/s.

Solution: (a) 16 A/lcm2, (b) 5.89 A/cm2)

Example 1.7

Determine the current in a pn junction diode. Consider a pn junction
at T =300 K in which Is =107 A and n = 1. Find the diode current for
Vb =+0.70V and Vp =-0.70 V.

Solution:
For VD =+0.70 V, the pn junction is forward-biased and we find
. VD/ _14 0.7/
ip = I [e v — 1] = 1071 [e /0026 — 1| — 4.93 mA
Forvp = —0.7 V, the pn junction is reverse bias



Vi -0.7
ip = I [e "y 1] = 10714 [e /0,026 — 1] ~—10"14A

Comment: Although Is is quite small, even a relatively small value of
forward-bias voltage can induce a moderate junction current. With a
reverse-bias voltage applied, the junction current is virtually zero.

Exercise 1.7

(@) A silicon pn junction at T = 300 K has a reverse-saturation current
of Is = 2 x 10™* A. Determine the required forward-bias voltage to
produce a current of (i) Io = 50 pA and (ii) Io = 1 mA. (b) Repeat part (a)
for Is =2 x 10712

Solution
a. (i) 0.563V, (ii) 0.641 V; (b) (i) 0.443 V, (ii) 0.521 V).

Part (12) Solved PROBLEMS
continuity equation

Problem (1)

Consider n-type silicon with Ng = 10°cm™= at T = 300°K. A
light source is turned on at t = 0. The source illuminates the
semiconductor uniformly, generating carriers at the rate of
Gn = Gp = 10¥%cm™3s~1, There is no applied field.

(a) Write down the continuity equation and solve it to find the
expression for the excess minority carrier concentration,
op(t), as a function of time fort 2 0.

Solution: When there is no applied electric field the carrier
distribution is diffusion driven. The continuity equation for
the minority carrier
op(x,t) 19],(x,t)
at q Ox
Then reduces to,

+ G,(x,t) — Ry(x,0)



06, c as,
—Lt=¢,- 2L
dat Ty
With the general solution
t
8,(t) = Aexp (— n_) + G,T,

p
Using the initial condition (before the light was turned on)

that ép(t) = 0, then we find thatA = — G,7. The full solution

then is,
t
8,(t) = G,T, {1 — exp (— 6)}

(b) As t —~, the system will approach steady state. When the
steady state excess carrier concentration is 5x103cm3, find
the minority carrier lifetime, ,,.

Solution: The system will approach steady state as t — «.
Evidently, the steady state carrier density is given
dp()|t » o = G,7,. The T, must then take on the value

T, = 5x1013/G . With Gp = 10 cm™3s!, then the minority
p

(hole) carried lifetime must be 7, = 5x107°s.

(c) Determine the time at which the excess carrier

concentration becomes half of the steady state
value,dp(t)|t —» oo that you calculated in (b).

Solution: The value at which
t 1
_ _ _ -6
exp (— ;) =5 so,t=1In(2)t, =0.69x5x107"°s

Problem (2)

2. Consider an n-type semiconductor as shown. Illlumination



produces a constant excess carrier generation rate of Gp is
the region —L = x < L. Assume the minority current density is
zero at x = =3L and x = 3L. Find the steady state minority
carrier concentration as a function of x, ép(x). There is no
applied electric field.

-3L -L 0 L 3L
X
An illuminated semiconductor

Solution: When there is no applied electric field the carrier
distribution is diffusion driven. The continuity equation for
the minority carrier

op(x,t) 19],(x,t)

dat q dax
Then reduces to,

+ G,(x,t) — Ry(x,0)

2
Osza Sggx,t) p_&
Tp
In —L<x <L
And
626p(x, t) &
— Yp 02 - E
In —3L<x <<—-Land L<x <<3L , with boundary

conditions that

68”( 3L) = a8’”(3L)—0
ax  Ox B



and ép(—L) and ép(L) are continuous. From symmetry, we
need only solve for x > 0 with new boundary condition that

d 6,, ©0) = 0
ox B
The solution is

( X b
G,7, + Aexp _L_p + B exp I

\
)OSx <L
p

~"

8,(x) = | x

X
Cexp(——>+Dexp<—> L<x <3L
L, L,

\ J

Where,
LzZJ = Dy7y
The end conditions at 0 and L then lead to A =B

And C = D exp (ﬂ)
LP

These results in
( X )
Gprp+Ecosh <E) 0 <x<L
>

x— 3L
Fcosh L <x <3L
L,

8,(x) = |

\
Where

3L
E = 2AandF = 2Dexp (L_)
p
Are the new constants to find and where
2 cosh (x) = exp(x) + exp (—x)
is the hyperbolic cosine function? We will later also use the
derivative of this function.
2 sinh (x) = exp(x) + exp (—x)
The hyperbolic sine function. At x =L, we find

L 2L
Gprp + E cosh L_p = F cosh E

X 2L
E sinh | — )= — F sinh | —
L, L,



where we have used the evenness of cosh and oddness of
sinh. Solving, we find
sinh (LL)
P E

sinh (2—L>
Ly

2L

G,T (—)

p°p /i
cosh (L) sinh (E) + cosh (ﬁ) sinh (L>
L, L, L, L,

. 2L
Gptpsmh (L—)

p

sinh (2)
LP
Where the identity,

e (3N oo (5 sinn (P2 4 cosh (P2 sinp (X
sin Lp = CO0S Lp sin Lp coSs Lp sin Lp

has been used. Substituting back, we find

) L
. Gprpsmh (E>

sinh (2)
LP

sinh (E) cosh (i>
L L,

_ _ p
p(x) = | 1 ] (3L> =0t =
sinh |(—

LP

G.T.sinh (=) cosh (=3t
P°Dp Lp Lp
L <x <3L

sinh (2)
LP

(b) Suppose the excess carriers are generated such that the

F= -

E=—




excess carrier concentrations are 10% of the equilibrium
majority carrier concentrations. Calculate the quasi-Fermi
levels relative the intrinsic Fermi levels, that is, Fn —=Ei and
Ei_Fp.

Solution: Here we can use that

n, + 8, = n; exp (E’;;TEi) , to find,
1.1x Ny
F,— E;=KT In (T) =0.521 eV
i
The minority carriers than are given by
2
Do = Z—‘ =4x103cm™3 , And
—p+ 6,~5,= (Ei _ EF)
Pp=p p = Op = N exp KT

That yields,
0.1de
E;— E,=KT In (T) = 0.459 eV
i

Part (13) Solved PROBLEMS

PN junction theory

Example

A silicon diode at temperature T = 300K has doping
concentration Na = Np = 1.2x10* cm 3, nj = 1.5 x10° cm -3, Dy,
=25cm?s 1, Dp=10cm?s 1, Ks=11.7, Lp = 2.2x103cm and
Ln = 3.5x103cm, and cross section area = 1x102 cm? .

Solution:
The minority hole in n - region

_nj  2.25x10%0 1 875x10% cm-3
PRO = N, ~ T1.2x1016 _ —o/>xEom

The minority electron in npo p-region



_ nf  2.25x10%0 1 875x10% em-?
PO = N T T12x1016 ~ O/OxIE oM

The reverse saturation current
_ q DpPno qDnnpo| -19 [10x1.0875x104
Is —Al L + L =1.602x10 2 2 10-3 -+
25 x1.875 x 10%
3.5x103

] =3.51x10"13 4

Example
An abrupt silicon (ni= 10 cm™®) p-n junction consists of a p-type
region containing 10 cm=3acceptors and an n-type region containing
5 x 10 cm=3 donors.
a. Calculate the built-in potential of this p-n junction.
b. Calculate the total width of the depletion region if the applied
voltage Va equals 0, 0.5 and -2.5 V.
c. Calculate maximum electric field in the depletion region at 0, 0.5
and -2.5 V.
d. Calculate the potential across the depletion region in the n-type
semiconductor at 0, 0.5 and -2.5 V.

Solution:
The built-in potential is calculated from:
e 16 16
4=V 2P g 0250m 1L XY g6y
nf 104

The depletion layer width is obtained from:

24 1 _ 1

the electric field from
20 —¥F,)

Ag

and the potential across the n-type region equals

Elx=01=-



2
fi"j"r.:ixn

28
Where
r, =xy e
N, + N
One can also show that:
4, = (3~ Va) iV,
N, o+ N,
This yields the following numeric values:
. =0 Fao=05W | F,=-25V
Xg 0215 pmn 0143 pmn 0703 pn
£ 40 kWicm 18 kW cm 8% kKWicm
# 01057 00216V 0522

Example:

Consider an abrupt p-n diode with Na= 10 cm=and Ng = 10 cm™.
Calculate the junction capacitance at zero bias. The diode area equals
10“ cm?2. Repeat the problem while treating the diode as a one-sided
diode and calculate the relative error.

Solution:
The built in potential of the diode equals:
N.:i N.::
g =0 n = 0,83V
H'

1
The depletion layer width at zero bias equals:

254 -0
Xg = =132 um
\[ gy

And the junction capacitance at zero bias equals:




Cg == =317¢F
Ad ¥, =0
Repeating the analysis while treating the diode as a one-sided diode,

one only has to consider the region with the lower doping density so
that

2 s
Xg =x, = qul[gf 7,0 =031 um

And the junction capacitance at zero bias equals

= 218 pF

_ 5
Cip =
Ad

v, =0

The relative error equals 0.5 %, which justifies the use of the one-
sided approximation.

Example

An abrupt silicon p-n junction (Na = 10'® cm3and Ng = 4 x 10 cm™3) is
biased with Va = 0.6 V. Calculate the ideal diode current assuming that the
n-type region is much smaller than the diffusion length with w, = 1 mm and
assuming a "long" p-type region. Use my, = 1000 cm?V-s and m, = 300
cm?/V-s. The minority carrier lifetime is 10 ms and the diode area is
100 mm by 100 mm.

Solution:
The current is calculated from:

Dan I
n '’ pl + p;'f:'nﬂ ](E'I'?a_”'?:f

I=gd -1

Ly Wy
With
Dn = mn Vy = 1000 x 0.0258 = 25.8 cm?/V-s
Dp = mp Vi = 300 x 0.0258 = 7.75 cm?/V-s
Npo = Ni#/Na = 102%/10% = 10* cm™
Pno = NZ/Nd = 10%%/4 x 10 =2.5x 103 cm?3

L, = D 7 =+258x107% =161 sm

Yielding 1=40.7 mA




Note that the hole diffusion current occurs in the "short" n-type region and
therefore depends on the quasi-neutral width in that region. The electron
diffusion current occurs in the "long" p-type region and therefore depends
on the electron diffusion length in that region.

Example
b. Calculate the diffusion capacitance of the diode described in Example
4.4 at zero bias. Use un= 1000 cm?/V-s, Up = 300 cm?/V-s, wp = 1 um

and w, = 1 mm. The minority carrier lifetime equals 0.1 ms.
c. For the same diode, find the voltage for which the junction
capacitance equals the diffusion capacitance.

Solution
a. The diffusion capacitance at zero volts equals
i It
Cag =222 4 J9WH g 9351019
’ vy vy
Using
_ Apru Dp
fs,p - d —.-f.
F
And
f 3 .a":l.-"EpD ‘DH
sm 9 .
Wp

Where the "short" diode expression was used for the capacitance
associated with the excess charge due to electrons in the p-type
region. The "long" diode expression was used for the capacitance
associated with the excess charge due to holes in the n-type
region.The diffusion constants and diffusion lengths equal

Dn = pn X Vi = 25.8 cm?/s
Dp = Up X Vi = 7.75 cm?/s

Lp =7y

And the electron transit time in the p-type region equals



A
W
=_£ =193ps

H
b. The voltage at which the junction capacitance equals the diffusion
capacitance is obtained by solving
.
J _ C'.:i,nEF“ iV,
1--2

#

Yielding Va = 0.442 V

Part (14) Solved PROBLEMS

ideal and Nonideal p-n Junction

1. Find the built-in potential for a p-n Si junction at room temperature
if the bulk resistivity of Si is 1 Qcm. Electron mobility in Si at RT is
1400 cm? V™1 s7%: pn/pp = 3.1; ni = 1.05x10*° cm~3.

Solution:
By definition, ep; = Fn —=Fp. Concentrations of the free carriers are
given by
FP
n—NC<— p—N,,exp(—ﬁ)
From here we get that
p

n np
= F KT 1 (—) KT 1 (—) =F KT 1 ( )
e Py gt n N, + n N, gt n NN,

E, — Fn)
KT ’

E
n? = NN, exp (— K—g,)

KT np
Pa=—In|—

We obtain ,

e n;

From n = 1/epun and p = 1/eppup, we finally get ¢, = 0.68 V.



2. For the p-n Si junction from the previous problem calculate the
width of the space charge region for the applied voltages V = -10, 0,
and +0.3 V. esi = 11.9

Solution:

Taking into account that at room temperature all donors and
acceptors are ionized, i.e. n = Ng and p = Na, from the values found in
the previous problem and

_ [e(@a—V)Ng+ N,y 2
B 2me NiN,
we get w(=-10V) =2 ym, w(0V) = 0.5 pm, and w(+0.3V) = 0.4 pm.

1. For the parameters given in the previous problem find the
maximum electric field within the space charge region. Compare
these values with the electric field within a shallow donor: E = e/ €s;
a’s, where ag is the Bohr radius of a shallow donor,

€5;h? m},

an

. = 0.33
me m,

a, =

Solution:
From the previous problem and

E 2 Zne((pd—V)Nd+NA 1/2

- { € N4N,4 }

we obtain that E(-10V) = 10° V/cm, E(0V) = 2.6x10* V/cm, and E(+0.3V)
= 2x10* V/cm.

The electric field within a shallow donor is, in turn, E = 3.4%x10° VV/cm,
that is, comparable to that of the p-n junction.

4. Calculate the capacity of the p-n junction from the problem 2 if the
area of the junction is 0.1 cm?2.

Solution:
Since
_ €S

At w
we get C(=10V) = 0.5 nF, C(0V) = 2 nF, and C(+0.3V) = 2.6 nF.




5. n-Si of a p-n Si junction has a resistivity of 1 Qecm. What should be
the resistivity of p-Si so that 99 % of the total width of the space
charge region would be located in n-Si (p*-n junction)? For the
parameters needed see problem 1.

Solution:

From the conditions of the problem w. = 0.01w and w4 = 0.99w. Since
wa/wd = Na/Na , we get that Na = 99Nq. Because Ng = 1/epun = 4.5x10%°
cm™, we get Na = 4.4x10" cm™,

6. At room temperature under the forward bias of 0.15 V the current
through a p-n junction is 1.66 mA. What will be the current through
the junction under reverse bias?

Solution:
js = 1.66mAexp(—-eV/KT) = 4 pA.

7. For a p*-n Si junction the reverse current at room temperature is 0.9
nA/cm?. Calculate the minority-carrier lifetime if Ng = 10*® cm™, n; =
1.05x10%° cm™3, and pp, =450 cm? V™1s™,

Solution:
For a p*-n junction

1
_epD, eD,n; en?(D, /2
Js = L,  NgL, Ng\71,
Taking into account that y = eD/kT, we finally get 1, = 4.5x107° s.

8. How does the reverse current of a Si p-n junction change if the

temperature raises from 20 to 50 -.C? The same for a Ge p-n junction.
Band gaps of Si and Ge are 1.12 and 0.66 eV, respectively.

Solution:

. E
Sincejs ~n? ~ T3 exp (— K—“;)
we get

j(T Ty\> E E
].s( 2) :(_2) exp (_ 9 . g)
Js(T1) T, KT, KT,

From here the ratios of the reverse currents in the p-n junctions made



of Ge and Si are 15 and 82, respectively.

9. Estimate temperatures at which p-n junctions made of Ge, Si, and
GaN lose their rectifying characteristics. In all cases Na = Ng = 10%°
cm™. Assume that E4 are independent of the temperature and are
0.66, 1.12, and 3.44 eV for Ge, Si, and GaN, respectively. Intrinsic
carrier concentrations at room temperature are n;®= 2x10%3n;S = 10%,
and ni®N=10"cm™3,

Solution:
p-n junction stops working when concentrations of electrons and
holes equalize. It happens when
—E

N;(Ny) =n; =~ /NN, exp (2 KTg") ~T°/2 exp (2 KTg")
From here and the parameters given we get that the maximum
temperatures are Tce = 400 K, Tsi = 650 K, and Tcan = 1700 K. That is,
only wide band gap semiconductors are suitable for extremal
applications.

Problem 2.25

Electrons in silicon carbide have a mobility of 1000 cm?/V-
sec. At what value of the electric field do the electrons reach
a velocity of 3 x 10”7 cm/s? Assume that the mobility is
constant and independent of the electric field. What voltage
IS required to obtain this field in a 5 micron thick region?
How much time do the electrons need to cross the 5 micron
thick region?

Solution The electric field is obtained from the mobility and

the velocity:

_ kb 1400 kv
= vy T 3x107 /em

Combined with the length one finds the applied voltage.
V=¢gL=30,000x5x104=15V

The transit time equals the length divided by the velocity:
tr=L/v=5x10%3 x 10’ = 16.7 ps



Example 4.2

An abrupt silicon (ni = 10'° cm3) p-n junction consists of a
ptype region containing 101 cm= acceptors and an n-type
region containing 5 x 10 cm-3 donors.

a. Calculate the built-in potential of this p-n junction.

b. Calculate the total width of the depletion region if the
applied voltage Vaequals 0, 0.5 and -2.5 V.

c. Calculate maximum electric field in the depletion region at
0,0.5and -2.5 V.

d. Calculate the potential across the depletion region in the
n-type semiconductor at 0, 0.5 and -2.5 V.

Solution
The built-in potential is calculated from:
PNy 1016 x 5 x 101
fi=Viln—5==0.02591n 1070 =0.76V

l
The depletion layer width is obtained from:

w= \/qus (;a + ;) (fi—Va)

the electric field from

2(f;i—V
f(x0) (f,w 2)
and the potential across the n-type region equals
_ qNgx;
fn= Ze.
Where,
N,

Xp =W ———
N,+ N,

one can also show that
(fi - Va)Na

fn= "N N,
This yields the following numeric values:




Va=0V Va=05V Va=-25V
w 0.315 pm 0.143 um 0.703 um
£ 40 kV/cm 18 kV/cm 89 kV/cm
fn 0.105V 0.0216 V 0.522V

Example 4.3

An abrupt silicon p-n junction (Na = 10'® cm=3 and Ng = 4 X
1016 cm) is biased with V4 = 0.6 V. Calculate the ideal diode
current assuming that the n-type region is much smaller than
the diffusion length with wp =1 um and assuming a "long" p-
type region. Use pn = 1000 cm?/V-s and pp = 300 cm?/V-s. The
minority carrier lifetime is 10 us and the diode area is 100 pm
by 100 pum.

Solution:
The current is calculated from:

1= qa [Pt Dolual ([, )
L, Wi

with

Dn = pnVi = 1000 x 0.0258 = 25.8 cm?/V-s
Dp = ppV: = 300 x 0.0258 = 7.75 cm?/V-s
Npo = n2i/Na = 1020/1016 = 104 Cm_3

Pno = N%/Ng = 10%°/4 x 106 =25 x 103 cm™

L,= J/D,t, = y/25.8x10°5 = 161 um
yielding | = 40.7 pA
Note that the hole diffusion current occurs in the "short" n-
type region and therefore depends on the quasi-neutral width
in that region. The electron diffusion current occurs in the
"long" p-type region and therefore depends on the electron
diffusion length in that region.




Example 4.4

Consider an abrupt p-n diode with Na = 10'® cm=3 and Ng =
10'® cm-3. Calculate the junction capacitance at zero bias. The
diode area equals 10“ cm?. Repeat the problem while treating
the diode as a one-sided diode and calculate the relative
error.

Solution The built in potential of the diode equals:

NdNa
fi=Viln ——*=0.83V
n:

l
The depletion layer width at zero bias equals:

W = \/2€s(fi_0)20.33”m

qNg
And the junction capacitance at zero bias equals:
eS
Cio = — = 3.17 pF
J w va=0 P

Repeating the analysis while treating the diode as a one-
sided diode, one only has to consider the region with the
lower doping density so that

2e
W=x,= \/q > (fi—Va) =0.31um

Ng4
And the junction capacitance at zero bias equals
eS
Cio = — = 3.18 pF
7o w va=0 P

The relative error equals 0.5 %, which justifies the use of the
one-sided approximation.

1.3 Ideal p-n Junction

1. Find the built-in potential for a p-n Si junction at room
temperature if the bulk resistivity of Si is 1 Qcm. Electron
mobility in Si at RT is 1400 cm? V™1 s7%; un/pp = 3.1; ni = 1.05 %



1019 cm-3,

Solution: (3.1)
By definition, ep; = Fn = Fp. Concentrations of the free
carriers are given by

E,— F,

E, - Fp)
KT

) Ny exp <_ KT

n= N.exp (—
From here we get that

epq= E, + KTln(")+KTln(N£v) - E, + KTln(np)

N, NN,
Since,
E
g
n? = N.N,exp (— ﬁ)
we obtain that
KT np
= — N\ —
Pa e n%

From n =1/e p pn and p = 1/e p yp, we finally get ¢, = 0.68 V.

6. At room temperature under the forward bias of 0.15 V the
current through a p-n junction is 1.66 mA. What will be the
current through the junction under reverse bias?

Solution: (3.6)
js = 1.66 mA exp(—eVI/KT) = 4 pA.

7. For a p+n Si junction the reverse current at room
temperature is 0.9 nA/cm? Calculate the minority-carrier
lifetime if Ng = 10> cm™3, ni = 1.05 x 10'° cm~3, and pp = 450
cm?V-1s™,

Solution: (3.7)
For a p+-n junction



1
Jo= epD, en;D, en} <Dp> /2
>TL, NgL, N4 \1,
Taking into account that gy = eD/kT, we finally get Tp = 4.5 X
1079 s.

1. Problem: A silicon p-n junction is formed between n-type Si doped
with Np = 10" cm=3and p-type Si doped with NA = 10 cm,

(a) Sketch the energy band diagram. Label all axes and all important
energy levels.

(b) Find nno, Npo, pPpo, and pno. Sketch the carrier concentration (of both
electrons and holes) as a function of position.

(c) Calculate the built-in potential Vpi in eV.

Solution:
(a) The energy band diagram with labeled important energy levels
and axes is

(b) Given n+=1.5x 10*° cm?,
in the quasi-neutral p-region,

Pyo = Np = 10'° cm™
In the quasi-neutral n-region,

n,, = Np = 107 cm™3

In the depletion region,
2

n:
n,, = Nl =2.25x10* cm™3
A

for p-side and
2

n:
Pno = — = 2.25x10% cm™3
Np

for n-side.. The diagram for carrier concentration is:
n(Xp)  P(Xn)

Pn

—INp /_

0 o)




(b) The build-in potential is
KT NuN KT
Vpi = —In——>2 = n2® _ 0.754ev
q n; q Pn

Problem: 4

Consider a p*-n Si junction at T = 300 K with Na = 10 cm™ and Np =
10%® cm3. The minority carrier hole diffusion constant is D, = 12 cm?/s
and the minority carrier hole lifetime is 17, = 100 ns. The cross-
sectional area of the junction is A = 10% cm?. Calculate the reverse
saturation current Is = Ajs. Calculate also the current at a forward bias
Va=05V.

Solution:

Since Na >> Np, it is an asymmetric junction and the total current is
dominated by the most heavily-doped side of the junction. the
saturation current density is given by:

_ 9 Dy, Pno

Js= =

p

Where,
2

1 n;:
L, = (DpT1,) /2 =1.095x10~3cm™3 and py, = N—:) =2.25x103cm™3
So, Js=23:9492 x 10" Alcm?

Is= -AJs=-3:9492 x 10" A
For a forward bias Va= 0.5V, the current is:

=1, (eqv°/KT ~1)=893pA

Problem (1)
1. n-Si with Ng = 7 x 10 cm™ additionally contains N; = 10*® cm™
generation- recombination centers located at the intrinsic Fermi level



with 0, = 0, = 1071° cm? and v: = 10’ cm/s. Calculate generation rate, if
1.n and p are low as compared to the equilibrium value
2.only p is below the equilibrium value. For Si, ni = 1.05x1%1% ¢cm~3,

Solution :
By definition

_ n?—-pn
"o+ n) + 1,(p +py)

Where 7, = 7,1 = N,o,v, = 107s71. In the first case n and p are less

than ni. Thus, np <n? and hence

2
n; n;

G = =
" Tn(ni + pi) 2 Tn

G,= —R

=5.3x10%cm3 /s

In the second case n = Ng>»n;, whereas p <nj, hence

n? n? n?

i i i 11 -3
— = =1.6x10""cm S
T, (n+n;+p;) tT,n 7T,N4 /

W=
Problem (2)
lllumination of n-type Si (N¢ = 10'® cm™) generates 10%* cm™/s
electron-hole pairs. Si has N; = 10'® cm™ generation-recombination
centers with on = op = 107 cm?2. Calculate equilibrium concentration
of electrons and holes if E: = Ej, where E; is the Fermi level of intrinsic
Si, and v; = 10" cm/s.

Solution:
In equilibrium, the generation G = 102 cm™/s and recombination R
rates are equal
np - n np np
Gn = R = =~ =
,(n+n)+ 1,(p+p) 7Tn+1T,p TN+ P)

Here we used 7, = 7, = T = (Nvt0n)™" = 107° sec. In n-type Si under
illumination, n = Ng + An, p = Ap = An. Thus,
(N + An) An
™ Ny+2An
Solving this equation with respect to An we obtain p = An = 1.1x10%
cm™3and n =1.1x10* cm~,

SOLVED PROBLEMS
The reverse saturation current at 300K of a p-n Ge diode is 5 uA . Find



the voltage to be applied across the junction to obtain a forward
current of 50 mA.

Solution
1= 1, [exv (57) - 1]
= I exp KT
So,
<eV)_ I g 50x10_3+ L - 104
CP\kr)~ 1,7 *~ S5x10°6 -
Or ,
V= KTl 10* = 138107 x300 2.303 x4 =0.238Volt
T e MY T T 1 6x10-10 A0 XEEE 0
Problem (3)

3. A p*-n Si junction (ni = 1.05x10° cm™, e€si = 11.9) is formed in an n-
type substrate with Ng = 10 cm™. If the junction contains 10*® cm™
generation-recombination centers located at the intrinsic Fermi level
with o, = o, = 107'® cm? (v: = 107 cm/s), calculate generation current
density at a reverse bias of 10 V.

Solution:

Generation current in the space charge region w is given by
. en, w
Ja = 37

Here, T! = Nionv: = 107 s™1. The width w of the space charge region for
a p*-n junction under reverse bias is

1
_[e@a=) [ ew)
2meNy, 2mweNy,
Here we used relation |V|>¢,4. From here we obtain that j; = 3 pA/cm?2.

/2
} =3.6 um

Problem (4)

For a p-n Si junction with the p-side doped to 10" cm~, the n-side
doped to 10 cm-3 (n*-p junction), and a reverse bias of -2 V,
calculate the generation current density at room temperature,



assuming that the effective lifetime is 107 s.

Solution:
Using the formulae of the previous problem and relation

KT N2
Pa=—1In|l—=

e n;

we get js = 1.6 nA/lcm?2,

Problem (5)
For a p-n GaAs junction at room temperature find the donor/acceptor
concentration at which de Broglie wavelength

2mTh
(4= g
2mE

3KT\ m. m,
<E N T) ’_e =0.63 ,_h =0.53 and €Gaas = 12'9'niGaAS

m, m,

=2.1x10°cm™3 and Ny, = N,

Solution:
From the parameters given, we find An = 2.5x107° cm and Ap = 8.5x10~’
cm. If Na = Na = N the width of the space charge region is

o= (£00)"

By definition, w = A. Substituting

KT N2
Pa=—1In|l—=

e n;

into the expression above and after some simplifications, we get
€ 2KT (N)
n

melA? e n;
Solving the above equation numerically, we obtain N = 6.8 x 1018 cm™
and 6.2x10'° cm™3 for electron and holes, respectively.

Problem (6)

When a silicon p*™-n junction is reverse-biased to 30 V, the depletion-
layer capacitance is 1.75 nF/cm?. If the maximum electric field at
avalanche breakdown is 3x10° V/icm, find the breakdown voltage. €si =
11.9.



Solution:

Since C = € l4mrwo, and under strong reverse bias wo = (e V/2mreNg)'?,
we obtain Ng = 1.1x10*° cm™3. Maximum electric field is at the interface
and for a p*-n junction equals E = 4mmeNqywi/e. From conditions of the
problem we find that at the breakdown w: = 18 um and, hence, the
breakdown voltage is 273 V.

Problem (7)
For a p*-n Si junction with Ng = 10%® cm~3, the breakdown voltage is 32
V. Calculate the maximum electric field at the breakdown. e€si = 11.9

Solution:
The width of the space charge region is w = (¢ V/2meNq)*? = 2 um.

From here we get that the maximum electric field at the breakdown is

4mTeN
E= wa=3x105V/cm

1.4 Non ideal p-n Junction

1. n-Si with Ng = 7 x 10> cm~2 additionally contains N; = 10%°
cm™ generation recombination centers located at the
intrinsic Fermi level with on = op = 107 cm? and vt = 107
cm/s. Calculate generation rate, if

1.n and p are low as compared to the equilibrium value

2. only p is below the equilibrium value. For Si, nj = 1.05 x
109 cm™s,

Solution: (4.1)

By definition
nlz — Pn
G,= —R, =
T, (n+ n)+t,(P+ pi)
where
7,' = 1,1 = n,o,v, = 107 /sec In the first case n and p are

less than ni. Thus, np <n? and hence,
, -3
i _ N — 5’3 X 1016 cm /SeC

2
G, = n —
Tn (Ni+ pi) 21y,
In the second case n = Ng > nj, whereas p < nj, hence




n; n, _ m

-3
G, = =1,6x1011cM "/ .

T, m+ n; + py) B nt, _TnNd

2. lllumination of n-type Si (Ng = 10'® cm™3) generates 10%
cm~3/s electron-hole pairs. Si has Nt = 10*® cm™3 generation-
recombination centers with on = op = 107'® cm2. Calculate
equilibrium concentration of electrons and holes if Et = E;j,
where Ei is the Fermi level of intrinsic Si, and vt = 107 cm/s.

Solution: (4.2)

In equilibrium, the generation G = 10 cm™/s and
recombination R rates are equal,
2
np —n; n
G = R = p—n p

T, (n+ n) +7,(p+ n) ~ TN + TP
= (np)/t(n +p)
Here we used t,, = 7, = T = (Nt vion)™ = 107° sec.
In n-type Si under illumination, n = Ng + An , p = Ap = An.
Thus,
_ (Nd + A n)An
T™ Ng+ 2An
Solving this equation with respect to An we obtain p = An =
1.1x10" cm=and n =1.1 x 101 cm~s,

3. A p*-n Si junction (n; = 1.05x10° cm™3, ¢ = 11.9) is formed in
an n-type substrate with Ng = 10® cm™. If the junction
contains 10 cm™ generation-recombination centers located
at the intrinsic Fermi level with on = op = 107> cm? (v¢ = 107
cm/s), calculate generation current density at a reverse bias
of 10 V.

Solution: (4.3)

Generation current in the space charge region w is given by
en;w

Jg = 21T




Here, T™ = Nt on vt = 107 s71. The width w of the space charge
region for a p*-n junction under reverse bias is

1
W= €(pa—V) /z~(i>1/2=36 m
271N, 2meNy OH

Here we used relation |V | > ¢,4. From here we obtain that jg =
3 uA/cm?,

4. For a p-n Si junction with the p-side doped to 101" cm™3, the
n-side doped to 10 cm~ (n*-p junction), and a reverse bias
of =2 V, calculate the generation current density at room
temperature, assuming that the effective lifetime is 107° s,

Solution: (4.4)
Using the formulae of the previous problem and relation

KT np
Pa=— In|—

e n;

we get js = 1.6 nA/lcm?.

5. For a p-n GaAs junction at room temperature find the
donor/acceptor concentration at which de Broglie
wavelength (A = 2mh /N2m™ E) of electrons/holes is equal to
the width of the space charge region. Assume <Ei > 3 kT/2,
m*e/mo = 0.063, m*w/mo = 0.53, and &caas = 12.9, nGaAs; = 2.1 x
108 cm™3, and Na = Nq.

Part (14) Solved PROBLEMS

The transition capacitance , The diffusion capacitance
Example 4.5
a. Calculate the diffusion capacitance of the diode described



in Example 4.4 at zero bias. Use pn = 1000 cm?/V-s, yp = 300
cm?/V-s, wp' = 1 um and wn' = 1 mm. The minority carrier
lifetime equals 0.1 ms.

b. For the same diode, find the voltage for which the junction
capacitance equals the diffusion capacitance.

Solution
a. The diffusion capacitance at zero volts’ equals
I,y  Ig,T,
Cio=———+ —=—=1.73x10"19F
0 Vi Vi *
Using
Ap.,,,D
Is,p =gq pzo P
p
And ,
An,,D
I, = q %
p

Where the "short" diode expression was used for the
capacitance associated with the excess charge due to
electrons in the p-type region. The "long" diode expression
was used for the capacitance associated with the excess
charge due to holes in the n-type region. The diffusion
constants and diffusion lengths equal

Dn = l.ln X Vt = 258 Cm2/S
L,= ,/Dptp

Dp =pup x Vi =7.75 cm?/s
And the electron transit time in the p-type region equals
Wy
Trn = 2D, =193 ps
b. The voltage at which the junction capacitance equals the
diffusion capacitance is obtained by solving




yielding Va=0.442 V

2. For the p-n Si junction from the previous problem calculate
the width of the space charge region for the applied voltages
V=-=10,0,and +0.3 V. &si = 11.9

Solution: (3.2)

Taking into account that at room temperature all donors and
acceptors are ionized, i.e. n = Ng and p = Na, from the values
found in the previous problem and

1
_ (€(@a— V) Ng+ N, /2
®=\"2me NyN,
we get w(=10V) =2 ym , w(0V) = 0.5 pm , and w(+0.3V) = 0.4
pm.

3. For the parameters given in the previous problem find the
maximum electric field within the space charge region.
Compare these values with the electric field within a shallow
donor: E = e/esia?s, where ag is the Bohr radius of a shallow
donor, ag =gsih?/m” ¢ €2 and me /mo = 0.33.

Solution: (3.3)

1
E—o (211 e(pg— V) Ny4N, >/2
€ Nd +Na
we obtain that E(-10V) = 10° V/cm, E(0V) = 2.6x10* V/cm, and
E(+0.3V) =2 x 10* V/cm.
The electric field within a shallow donor is, in turn, E = 3.4 x
10° V/cm, that is, comparable to that of the p-n junction.




4. Calculate the capacity of the p-n junction from the problem
2 if the area of the junction is 0.1 cm?.

Solution: (3.4)
€S

4w

we get C(=10V) = 0.5 nF, C(0V) = 2 nF, and C(+0.3V) = 2.6 nF.

5. n-Si of a p-n Si junction has a resistivity of 1 Qcm. What
should be the resistivity? of p-Si so that 99 % of the total
width of the space charge region would be located in n-Si
(p*-n junction)? For the parameters needed see problem 1.

Solution: (3.5)

From the conditions of the problem wa = 0.0lw and wd =
0.99w. Since wa/wd = Nd/Na , we get that Na = 99 Ng. Because
Nag = 1/eppn = 4.5 x 1015 cm™3, we get Na=4.4 x 10" cm™3,

Solution: (4.5)
From the parameters given, we find An = 2.5 x 10® cm and A
= 8.5 x 107" cm. If Ng¢ = Na = N the width of the space charge

region is
€ 1
_ ( Pa ) 2
W meN
By definition, w = A. Substituting

KT N2
Q= —In|—

e n;

into the expression above and after some simplifications, we

get
N — € ZKTl N
- mwel®: e n n.

l

Solving the above equation numerically, we obtain N = 6.8 x




10 cm™ and 6.2 x 10 cm™ for electron and holes,
respectively.

6. When a silicon p+-n junction is reverse-biased to 30 V, the
depletion-layer capacitance is 1.75 nF/cm?. If the maximum
electric field at avalanche breakdown is 3 x 10° V/cm, find the
breakdown voltage. €si = 11.9.

Solution: (4.6)

Since C = €/ 4 1 wo, and under strong reverse bias wo= (€ V /
2 1 e Ng)¥2, we obtain Ng = 1.1 x 10*® cm™3. Maximum electric
field is at the interface and for a p*-n junction equals E =

41 e Ng w1/ €. From conditions of the problem we find that at
the breakdown wi: = 18 pum and, hence, the breakdown
voltage is 273V .

7. For a p*-n Si junction with Ng = 10'® cm~3, the breakdown
voltage is 32 V. Calculate the maximum electric field at the
breakdown. €si = 11.9.

Solution: (4.7)
The width of the space charge region is w = (eV / 21reNq)Y?= 2
Mm. From here we get that the maximum electric field at the
breakdown is

4meNd
E =

— w~3x10° V/m

Problem:2

A Si p-n junction has dopant concentrations Np = 2 x 10 cm= and Na
=2 x 10 cm=.

Calculate the built-in potential Vui in eV and the total width of the
depletion region W = Xno + Xpo at zero bias (that is, Va = 0) and under a
reverse bias Va = - 8V.

Solution:
(@) Given ni=1:5x 10 cm, the build-in potential is:



KT N/N KT
Vi = In AZD = ln& = 0.671eV
q n; q Pn
(b) The depletion width with a bias Vais give by:

W= ZGO(Vbi—Va) <1+ 1)
q Ny Np

For Va = OV , we have W = 0:691um and for Va = - 8V , we have W =
2:475 pm.

Problem: 3

A Si p-n junction is reverse-biased with Vo = -10V . Determine the
percent change in junction (depletion) capacitance and built-in
potential if the doping in the p region is increased by a factor of 2.

Solution:

Let us assume the Na and Np values are Np =2 x 10*® cm™= and Na= 2 x
10%® cm3, then the build-in potential is calculated by the equation, we
have:

KT NuNp, KT p,
= 1 = n

;= n — =0.671eV
T q T n? q P
and
KT 2N,4N,
Vpi = In 5 = 0:6888 eV
q n;

Therefore, Vi is increased by 2:67%.
The depletion capacitance can be calculated by
€A
“=w
Where A is the cross-sectional area of the junction and W is the
depletion width calculated by:
W= \/% (L + L) =2:7549 um

Ny Np

_ ReWw-ve (1 1Y _..
w_\/ : (ZNA+ND)—2.6938um

Therefore, the percent change in junction depletion capacitance is
given by:
Ci— G w—w

C;

= 2.27%
-



Switching time

Example 1.8

Determine the current Ip and the diode voltage Vp for the circuit
shown with Vpp=5V and R=1 K . Assume that the diode has a current
of 1 mA at a voltage of 0.7V and that its voltage drop changes by 0.1V
for every decade change in current. To begin the iteration, we assume
that Vb = 0.7 V and use the next equation to determine the current.

Voo T XZ V:

Assuming that Vpp is greater than 0.5 V or so, the diode current will be
much greater than Is, and we can represent the diode i-v characteristic
by the exponential relationship, resulting in

VD/

Ip=I,e 'mVr
The other equation that governs circuit operation is obtained by
writing a Kirchhoff loop equation, resulting in

Vpp — vp
Ip — R

Assuming that the diode parameters Is and n are known , the two
equations above has two unknown quantities Ip and Vp. Two
alternative ways for obtaining the solution are graphical analysis and
iterative analysis.

Graphical Analysis Using the Exponential Model

Load line | Diode characteristics

Q

operating point

ClarnmAa — 17D



4\

|

\ 4

Graphical analysis is performed by plotting the relationships of the
used equations above on the i-v plane. The solution can then be
obtained as the coordinates of the point of intersection of the two
graphs. A sketch of the graphical construction is shown. The curve
represents the exponential diode equation, and the straight line is
known as the | o a d line. The load line intersects the diode curve at
point Q, which represents the operating point of the circuit. Its
coordinates give the values of Ip and Vbp.

Example 1.8
Determine the current Ip and the diode voltage Vp for the circuit shown
— D

AN
Voo T XZ V:

With Vpp=5V and R = 1 K . Assume that the diode has a current of 1

mA at a voltage of 0.7V and that its voltage drop changes by 0.1V for

every decade change in current. To begin the iteration, we assume

that Vb = 0.7 V and determine the current
Vpp— v 5—-0.7

Ip ‘"’R D _ —=43mA
We then use the diode equation to obtain a better estimate for Vp. This
can be done by employing Eq. as

i
V,— Vy=23nV;log 1/i2




23nV;=0.1V ,thusV, = V,; + 0.1 log ‘l/i2
Substituting V1 = 0.7 V, I: = 1 mA, and |2 = 4.3 mA results in V2 = 0.763
V. Thus the results of the first iteration are Ip = 4.3 mA and Vp = 0.763
V. The second iteration proceeds in a similar manner:
Vop— vp 5-—0.763
Ip = = =4.237 mA

7
V,=0.763 + 0.1 log =0.762V

Thus the second iteration yields Io = 4.237 mA and Vp = 0.762 V. Since
these values are not much different from the values obtained after the
first iteration, no further iterations are necessary, and the solution is
Ip =4.237 mA and Vp = 0.762 V.

Example 11

The dc power supply circuit of figure shown is to be designed for the
following specifications: dc output voltage = +15 V, dc load current =
100 mA, and percent ripple = 5%. The rectifier diode can be modeled
with the parameters Vpo = 0.7 V and Rp = 0. Calculate the required
transformer secondary ac rms voltage and the value of the filter
capacitor. Assume a frequency f = 60 Hz.

iL(t) ——

B

I =+ +

To AC Vs () —_
Power C RLN vL(t)
Line - -

Solution.

The peak secondary transformer voltage is given by Vi1 = 15+0.7 = 15.7
V. The ac rms voltage is 15.7/ ¥ 2 = 11.1 V rms. The effective value of
the load resistor is RL = 15/ 0.1 = 150 Q. The value of C can be

calculated form equation Percent Ripple < [1 — exp (R_—TC)] x100 %
L

Where equality used. We obtain



T -1 s -1

" Rin (1- =) B0 (1~ */100)

If follows from the inequality equation Percent Ripple < [1—

C

= 2170 uF

exp (R_—TC)] x 100 % that this value for C gives a percent ripple that is
L
less than 5%.

Part (15) Solved PROBLEMS
photoelectric effect

Problem (1)

(&) An electron beam strikes a crystal of cadmium sulfide
(CdS). Electrons scattered by the crystal move at a velocity
of 4.4 x 10° m/s. Calculate the energy of the incident beam.
Express your result in eV. CdS is a semiconductor with a
band gap, Eg, of 2.45 eV.

(b) Cadmium telluride (CdTe) is also a semiconductor. Do
you expect the band gap of this material to be greater or less
than the band gap of CdS? Explain.

Solution

(@)



Eincident

e” Scattered

Eg EE——

Eemitted photons

CdS crystal

m v?

Eincident e— — Eemittedv + Escattered e— — Eg + 2

31 5 m) 2
1 9.11x10 3 kgx (4.4x1o —)
Eincidente— = 2.45 eV + E X s

1.6 x10 19

=2.45eV +0.55eV =3 eV
(b) Eg(CdTe) <Eg¢(CdS)
The Cd-S bond is stronger than Cd-Te bond because
although both S and Te are group 16, Te is much larger than
S.

Problem #8

The energy gap (Eg) of ZnSe is 2.3 eV.

(@) Is this material transparent to visible radiation? Substantiate your
answer.

(b) How could you increase the electrical conductivity of this
material? Give the reasons for the effectiveness of your suggested
approach.

Solution



A (A°)

CB
E(hv)
2 3eV

Absorb

Blue green  yellow red T
Absorbed/_l—"mh itted

23 226 1.77
<—E(eV)

A (A°) wave length

(@) The optical properties of ZnSe can be explained when
comparing the energy band of the visible spectrum with the energy
band diagram of ZnSe. Absorption takes place via photo excitation for
all radiation with E 2 2.3 eV. From the energy distribution of the visible
spectrum we recognize that the blue— green portion has photon
energies in excess of the band gap (Eq = 2.3eV) and thus will be
absorbed. The yellow-red potion, on the other hand, has photon
energies less than the band gap - it will be transmitted. ZnSe,
therefore, is expected to exhibit a yellowish—red color.

(b) In principle there are two ways to increase the electrical
conductivity of ZnSe:

a. A temperature rise. Any rise in temperature will increase the
number of “thermally activated” charge carriers in the conduction
band (electrons) and in the valence band (holes) and, thus, the
electronic conductivity.

Aside: The electrical conductivity of solids, demonstrated by the flow
of electronic charge carriers under an applied electric field (E), can be



formulated through Ohm’s law, J = oE, which states that the current
density (J = number of charges transported through a unit area in a
unit time) is proportional (o = conductivity) to the applied electric
field. Accordingly:
J=Nev,

where N = number of charge carriers/unit volume, e = electronic
charge and vq = average drift velocity of charge carriers in an applied
electric field. We thus obtain:

Nev,
o=—F
and if we define d(v /E) = u, the charge carrier mobility, we have:
oc=Nep

In intrinsic semiconductors we have both electrons and holes
contributing to conduction:

eenheh
0 = Ne € HJe + Nnepn = Ne(Me + pn )

since Ne = Nn. Taking the number of thermally generated charge
carriers, given by the relationship

—-E
N=A4aT"l2e °l2kr
we obtain the temperature dependence of the conductivity as:

_ 3/ _Eg/ x
oc=AT'2e '2KT"e(u, + Hp)

To assess the temperature dependence of electrical conductivity we
must take into consideration that, because of increased vibration of
the atoms about their lattice positions, the charge carrier mobility will
decrease (increased scattering of charge carriers) with increasing
temperature. This effect explains why the electronic conductivity in
metals, where N is constant, will decrease with increasing
temperature. In semiconductors, where N increases with temperature,
the accompanying mobility effect is not apparent at low temperatures
(conductivity increases), but becomes pronounced at high
temperatures (conductivity decreases).
b. Introduction of shallow impurity (or defect) states close to the
conduction or valence band. This is accomplished by the
incorporation of appropriate dopant elements into the crystal matrix.
If these impurities are shallow (~0.01 eV from the conduction or
valence band), they will be totally ionized at room temperature and
each will contribute an electron (donor dopant: K, Na) or holes



(acceptor dopant: G, Br), thus increasing the electrical conductivity
without the necessity of a temperature rise. (Be aware that certain
defects in the crystal lattice may also increase the electronic
conductivity.)

9. Electron mobility in Si is 1400 cm? V~1s™1, Calculate the mean free
time in scattering (Relaxations time) of electrons.

Effective mass is m*e/mo = 0.33.

Solution:

From p = et/mx we get that T = 2.6x1071% s,

Example 1.1

A metal has a work function of 4.3 V. What is the minimum
photon energy in Joule to emit an electron from this metal
through the photo-electric effect?

What are the photon frequency in Terahertz and the photon
wavelength in micrometer?

What is the corresponding photon momentum? What is the
velocity of a free electron with the same momentum?

Solution
The minimum photon energy, Epn, equals the work function,
®w, in units of electron volt or 4.3 eV. This also equals:
Eph=q¢p,=1.6x10""x4.3=6.89x10""
The corresponding photon frequency is:
_ 6.89x107"
Jon = G626 x 103
The corresponding wavelength equals:
_hc  6.626x1073*x3x10° 1.24p

 Epp 6.89 x 10~1° ~ Epp (eV)
The photon momentum, p, is:
h 6.626x103*

P=77 0.288x10-5

=1040THz

= 0.288 um

=2.297x10"%" kgm/s




And the velocity, v, of a free electron with the same
momentum equals:

p 2.297x107%7
V= T 9 11xi03L C 2222m/s

Where mo is the free electron mass
Epn=q¢m=16x10"1x4.3=6.89x10"1°

Example 1.2 (the blackbody radiation)

The spectral density of the sun peaks at a wavelength of 900
nm. If the sun behaves as a black body, what is the
temperature of the sun?

Solution:
A wavelength of 900 nm corresponds to a photon energy of:

_hc 6.626x1073*x3 x 10°

E =2.21x10"19Joul
ph = 7 900 x 10-9 . Joule

Since the peak of the spectral density occurs at 2.82 kT, the
corresponding temperature equals:
E,pn  2.21x1071

~ 282k 282x1.38x10-23

T = 5672 Kelvin

Example 1.3

An electron is confined to a 1 micron thin layer of silicon.
Assuming that the semiconductor can be adequately
described by a one-dimensional quantum well with infinite
walls, calculate the lowest possible energy within the
material in units of electron volt. If the energy is interpreted
as the Kkinetic energy of the electron, what is the
corresponding electron velocity? (The effective mass of
electrons in silicon is 0.26 mo, where mo = 9.11 x 103! kg is
the free electron rest mass).



Solution:
The lowest energy in the quantum equals:

_R? (1) (6.626x10734)? ( 1 )2
- 2m*\2L,)] 2x0.26x9.11x10731\2x10°°

=2.32x10"%5joule = 1.45 meV
Then velocity of an electron with this energy equal:

_ [2Ea_ | 2x232x10%
V= I~ J0.26x9.11x1031 m/s

Example 1.4

Consider an infinitely long cylinder with charge density r,
dielectric constant €0 and radius ro. What is the electric field
in and around the cylinder?

E4

Solution:

Because of the cylinder symmetry one expects the electric
field to be only dependent on the radius, r. Applying Gauss's
law one finds:

2
- mwreL
EA=e2nrl= g= prr -

€o €o

And

2
- wr: L
fA=e2nrl= Q_rrrpl

€o &o

Where a cylinder with length L was chosen to define the
surface A and edges effects were ignored. the electric field

then equal:
pr

e(r) = 2e,
The electric field increases with the cylinder with increasing
radius. The electric field decreases outside with the cylinder
with increasing radius.




Problem 1.1

Calculate the wavelength of a photon with a photon energy of
2 eV. Also, calculate the wavelength of an electron with a
Kinetic energy of 2 eV.

Solution The wavelength of a 2 eV photon equals:
hC 6.626x1073*]Jx3x108m/sec
E,n, 1.602x10°1°¢/, .,

=0.62 um
where the photon energy (2 eV) was first converted to Joules
by multiplying with the electronic charge. The wavelength of
an electron with a kinetic energy of 2 eV is obtained by
calculating the deBroglie wavelength:

_ h 6.626 x 10734
deBrogliel,, = — = = 0.87nm

7.62 x10-25 K9 ™/
Where the momentum of the particle was calculated from the
Kinetic energy:
p=V2ZmE= 2x9.11x1031kgx1.6x10%cx2eV
=7.64x10"2> kgm/s

deBrogliel,, =

Problem 1.2

Consider a beam of light with a power of 1 Watt and a
wavelength of 800 nm. Calculate

a) the photon energy of the photons in the beam,

b) the frequency of the light wave and

c) the number of photons provided by the beam in one
second. Solution

The photon energy is calculated from the wavelength as:

hcC 6.626 x 1073* Js x3x 1083 m/s
Eph = . = _
deBrogliel,, 800x10°m
=2.48x 10719

or in electron Volt:



£ 2.48x10719) _ {550y
Ph™ 1 6x10 19 €

The frequency then equals: -
E,n  2.48x1077)
h 6.626 x 10734 Js

And the number of photons equals the ratio of the optical

power and the energy per photon:
1watt 1 watt

E,,  2.48x10°19)

=375THz

n=

# photons = =4x10'8

Problem 1.3
Show that the spectral density, uw(equation 1.2.4) peaks at
Eph = 2.82 KT. Note that a numeric iteration is required.

Solution
The spectral density, uw, can be rewritten as a function of
B hw
X~ KT
K3T3 X3

Yw = h2p2cZexp () — 1

The maximum of this function is obtained if its derivative is
zero or:

du, 3 x° x*exp ()

dy exp(x)—-1 (exp(x)—1)>
Therefore y must satisfy:

3-3exp(—x)=x
This transcendental equation can be solved starting with an
arbitrary positive value of y. A repeated calculation of the left
hand side using this value and the resulting new value for y
quickly converges to ymax = 2.82144. The maximum spectral
density therefore occurs at:
Ephmax = Xmax KT = 2.82144 KT

0



Problem 1.4
Calculate the peak wavelength of blackbody radiation
emitted from a human body at a temperature of 37°C.

Solution The peak wavelength is obtained through the peak

energy
hC hC

Ephmax 2.82KT

_ 6.626x10%*x3x10° 165 % 10-5
= 2.82x1.38x10-23 x310.15 > 7 pm

deBrogliel,, =

Where the temperature was first converted to units Kelvin.

Small signal

Example

In the circuit shown, a sinusoidal signal voltage is used to charge a
12-V car battery. The source voltage has amplitude of 20 V that is
shown in Fig. 2.1.5(a). Find the values of ip and vp and sketch their
waveforms. Also, find the average value of the current charging the
battery.

R=100Q i

— N\

Vs(t) +Vp - 12V

@, T

In volts Vs(t)
A

20
10
6

-10 6: O 2w 63 064 3T 41T
-20




b

SNVANW

Solution

If the diode is forward-biased, vp = 0, and the diode current is
. (Vs - 12)
' = TF00

It is convenient to describe the time-varying source voltage as

Vs (6) =20sin (09),
Where 6 = (2 w f t) and f is the frequency. To have ip > 0 (forward-
biased), vs must be greater than 12 V; i.e. only if vs > 12 V, there is
a current in the loop. Otherwise the diode will be reverse-biased and
will not conduct. Thus, the sketch of the diode current is shown in
Fig. (b). Clearly, the diode conducts between 6:and 6: during the
first
cycle of input sinusoid, and again between 63 and 64 during the

second cycle.

Ifip>0,vp=0.If vs <12V, the diode is reverse-biased, and ip must be
equal to zero. Therefore, if vs <12 V, KVL gives

vp = (vg —12)V
The sketch of the waveform for vp is shown in (c). The average current



can be found by finding the average value of the current during one
period.
First, during the first period, we observe that

_®o12) e <e<0, =0
= 0 M =050 7
Otherwise,
Since vs (6) = 20sin(0), the values of the angles can be found using
.4 (3 1 (3
0, = sin <§> and 6, = ™ — son (E): m— 04

The average value of the current is
1 (™%20sin0— 12 qo = 24cos6;y — 0.12

Ip = —
DT 2m g, 100 0 2w
Substituting the value of 6:in the above equation, we find that
Ip = 15.51 mA.
Breakdown
Example

An abrupt pn junction has doping densities of Na = 5x10% atoms/cm?
and Np = 10'® atoms/cm3. Calculate the breakdown voltage if Eci: =
3x10° V/icm.

Solution
gi(Ng+ Np) ,  1.04x107'*(5x10" + 10'°)

Vg = = =88V
R 2qN;,Np, ™7 2x1.6x10°1%x5x1015 x 1016

Example
Determine breakdown voltage for a pn junction shown , assume Vp; =
o9V

Solution:
First perform a check whether the depletion width still lies in the



highly doped region or nit. If it does, then

€s

W=4x10°
X qu

=2.6 um
D
This shows that the depletion width extend into the highest doped N-

region as well resulting in the following diagram.

E4

X

v

2x10°

N x 10°

The electric field at xo is obtained using the expression

W=4x105x ——x1 3 um
qNpy
Using the Poisson’s equation

The area under the electric field curve will be equal to Vi + BV , so
that , BV =40.7V

Example 6

A Zener diode at room temperature (Vr = 0.0259 V) has the
specifications Vz =10V, Iz=10 mA , and r; = 20 Q. Calculate

(a) the Zener breakdown ideality factor n,

(b) the voltage Vzo in the linear circuit shown, and

(c) the voltage at which the breakdown current is Iz/ 10.

l

\'Z:

< +

Jangent line -
Slope = 1/R
VzO




"""" il
|

v

Solution.
(a) Equation r, = 2 VT/IZ be used to solve for nz to obtain
1, = I,r, _ 10mx 20 — 772
S 25.9m
(b) The voltage Vz is calculated from Eq. V,, = V,— I,r, to obtain

Vo=V,— I,r,=10—-10mx20=9.8V
(c) If Is << Iz, Eq.

= e (7)1 new (-5557)
L= ex — — ex -
° b nVr 2 4P nVr
Can be solved for the voltage at which i = -1 mA as follows:

v=-V,—n,Vrin (_

= —9.54V
The reverse-bias voltage is the negative of this, i.e. +9.54 V.

l
: ) = —10-7.72x25.9mxIn (0.1)

z

Part (16) Solved PROBLEMS
Schottky Diode

Problem (1)

Find a height of the potential barrier for a Au-n-Ge Schottky contact at
room temperature (T = 293 K) if p =1 Qcm, pau = 5.1 eV, and Xce = 4.0
eV. Electron mobility in Ge is 3900 cm? V™! s™1, density of the states in
the conduction band is Nc = 1.98x10® xT32¢cm™3,

Solution:
eVq =0.88 eV



Problem (2)

Calculate the depletion width for a Pt-n-Si Schottky diode (T = 300 K)
atV =0, +0.4, and -2 V. Concentration of doping impurity in Si equals
4x10' cm™3. Work function of Pt is 5.65 eV, electron affinity of Si is
4.05 eV, esi = 11.9, density of the states in the conduction band is Nc¢ =
6.2x10% xT32cm™,

Solution:
w =0.22, 0.19, and 0.34 ym for V = 0, +0.4, and -2 V, respectively

Problem (3)

For a Schottky contact Au-GaAs calculate the maximum electric field
within the space charge region at V = 0, +0.3, and =100 V. Ny = 10
cm™3, Xcaas = 4.07 eV, €cans = 12.9. Work function of Auis 5.1 eV, T =
300 K, density of the states in the conduction band is N¢ = 8.63x10%®
xT32¢cm™3,

Solution:
E =5.1x10% 4.2 x 10% and 5.1 x 10° V/ecm for V = 0, +0.3, and =100 V,
respectively.

Problem (4)

What is the electric field E for a Schottky diode Au-n-Si at V = -5V at
the distance of 1.2 ym from the interface at room temperature if p =
10Qcm, g = 1400 cm? V™1 571, N¢ = 6.2x10%° xT32¢cm™3,

Solution:
E = 2x10* V/cm.

Problem (5)

Find current densities | at room temperature for a Schottky diode Pt-
n-GaAs at V = +0.5 and -5 V if p = 50Qcm. g, = 8800 cm? V™t s™1, mn/mo
= 0.063, work function of Pt is 5.65 eV, Xcaas = 4.07 eV, N¢ = 8.63 x 103
x T¥2cm™3, Apply thermionic-emission theory.

Solution:
From n = 1/eppn we obtain that n = 1.4x10% cm™. Thus,

N
eps= YPp;— )(GaAS—KTlnle.BZeV



The average thermal velocity is
8 KT

v = (
nm,

1/2
) =4.6x10" cm/s
From here we get

1 —e @y
Js = Zeanexp( KT

/= e ()

we obtain j(0.5V) = 1.5x107*® A/cm? and j(=5V) = js.

) =3x10722 A/cm?
From here we get

Problem (6)

The capacitance of a Au-n-GaAs Schottky diode is given by the
relation 1/C? = 1.57x10%° =2.12x10*° V, where C is expressed in F and V
is in Volts. Taking the diode area to be 0.1 cm?, calculate the barrier
height and the dopant concentration.

Solution:
@;=0.74V,n = 2.8x10Y cm™2

7. From comparison of the de Broglie wavelength of electron with the
depletion width of a contact metal-n-Si, estimate the electron
concentration at which Schottky diode loses its rectifying
characteristics. For the estimate, assume that the height of the
potential barrier a the contact is half the value of the band gap at
room temperature (Eg = 1.12 eV), m*e = mo, T = 300 K, and esi = 11.9.

Solution:
A Schottky diode loses its rectifying characteristics when de Broglie
wavelength, A, of electron becomes comparable with the depletion
width, w, of the diode. Since

2mh NI

A=——=andw = ng

2m, E 4mTe n
From the condition A<<w
We obtain that ,
3 e;m, KTE,

"< Henietn? |
Here, we assumed that the mean energy of electron is E = 3kT/2 and




the potential barrier at the contact is @4 = Eg/2e. Substituting
numerical values in the above expression we get that for proper
functioning of the Schottky diode, electron concentration must be
significantly less than 2x10'° cm™.

Problem 3.1

Consider a gold-GaAs Schottky diode with a capacitance of 1
pF at -1 V. What is the doping density of the GaAs? Also
calculate the depletion layer width at zero bias and the field
at the surface of the semiconductor at -10 V. The area of the
diode is 10° cm?.

Solution The depletion layer width can be calculated from the
capacitance yielding:
esA  13.1x8.854x10*x10°°

Xq C 10-12 0.116 um

From this one can find the doping density:
2e,(fi— Vo)  2x13.1x8.854x10™ x(f; +1)

q x5 1.6 x 10719 x (1.16 x 10~5)2
Provided one knows the built-in potential

d=

N, 4.35 x 1077
fi=fp—V,iIn —=4.8—4.07-0.0259 In
Nd Nd

Which in turn depends on the doping density. Starting with f;
= 0.7 one finds Ng = 1.83 x 10" cm and the corresponding
built-in potential fi = 0.708. Further iteration yields the result:
Ng = 1.84 x 10 cm=3.

The depletion layer width at zero bias equals:
\/2 e,(fi—Vy 2x13.1x8.854x10'*x(0.708-0)
xd = =

qN, 1.6x1071° x1.84 x 1017

=0.075 um
And the electric field at the surface for Va = -10 V equals:



qNgxg
S

~ \/2 (f; — Va)qu\/2x20.7x1.6x10‘19x1.84x1017

e(x=0)=

=737 KV/cm

es 13.1x8.854 x 10714

Example 3.1

Consider a chrome-silicon metal-semiconductor junction
with Ng = 107 cm=3. Calculate the barrier height and the built-
in potential. Repeat for a p-type semiconductor with the
same doping density.

Solution The barrier height equals:
¢pp= P, — x=4.5—4.05=0.45V
Note that this value differs from the one listed in Table, since
the work function in vacuum was used.
The built-in potential equals:

N, 2.82 x 101
¢1=¢B—thnN—d=0.45—0.0259ln ToT7 =0.3V

The barrier height for the chrome/p-silicon junction equals:

E
bp= x+ 7"— &, =4.05+1.12-4.5=0.67V

And the built-in potential equals:

N, 1.83 x 101°
¢1=¢B—thnN—a=O.67—O.0259ln ToT =0.53V

1.2 Schottky Diode

1. Find a hight of the potential barrier for a Au-n-Ge Schottky
contact at room temperature (T = 293 K) if p = 1Q cm, Pau =
5.1 eV, and Xce = 4.0 eV. Electron mobility in Ge is 3900 cm?
V-t s71 density of the states in the conduction band is N¢ =
1.98 x 1015 x T¥2 cm™8,

Solution: (2.1)
eVq = 0.88 eV.



2. Calculate the depletion width for a Pt-n-Si Schottky diode
(T =300 K) at V =0, +0.4, and =2 V. Concentration of doping
impurity in Si equals 4 x 101 cm~3. Work function of Pt is 5.65
eV, electron affinity of Si is 4.05 eV, &si = 11.9, density of the
states in the conduction band is Nc = 6.2 x 10 x T¥2¢cm™3,

Solution: (2.2)
w = 0.22, 0.19, and 0.34 pym for V = 0, +0.4, and -2 V,
respectively.

3. For a Schottky contact Au-GaAs calculate the maximum
electric field within the space charge region at V = 0, +0.3,
and =100 V. Ng = 10 cm™3, Xcaas = 4.07 eV, €caas = 12.9. Work
function of Auis 5.1 eV, T =300 K, density of the states in the
Conduction band is Nc = 8.63 x 103 x T32 cm™3,

Solution: (2.3)
E=5.1x10% 4.2 x10% and 5.1 x 105 V/cm for V = 0, +0.3, and

- 100 V, respectively.

4. What is the electric field E for a Schottky diode Au-n-Si at
V = =5V at the distance of 1.2 ym from the interface at room
temperature if p =10 Qcm, pn = 1400 cm? V™1 s71 N = 6.2 x
10%% x T32cm™3,

Solution: (2.4)
E=2x10*V/icm.

5. Find current densities j at room temperature for a Schottky
diode Pt-n-GaAs at V = +0.5 and =5 V if p = 50 Qcm. un = 8800
cm? V71 s71 mn/mo = 0.063, work function of Pt is 5.65 eV,
Xcaas = 4.07 eV, N¢ = 8.63 x 1013 x T¥2cm™3, Apply thermionic-
emission theory.



Solution: (2.5)
From n = 1/epun we obtain that n = 1.4 x 1023 cm~3. Thus,

200 = Yy — Yg,a, — KT lnNc/n =1.32eV
The average thermal velocity is

1
vT = (SKT/nmn) /2 _ 4.6 x107 M/

From here we get
1

Js= 7 envrexp (- €94/pr) =3 x 1022 A/cmz

Finally, from

J=7Js(exp (¢V/gr) - 1)
we obtain j(0.5V) = 1.5 x 10713 A/cm? and j(=5V) = js.

6. The capacitance of a Au-n-GaAs Schottky diode is given
by the relation 1/C? = 1.57 x 10 = 2,12 x 10*® V, where C is
expressed in F and V is in Volts. Taking the diode area to be
0.1 cm?, calculate the barrier height and the dopant
concentration.

Solution: (2.6)

7. From comparison of the de Broglie wavelength of electron
with the depletion width of a contact metal-n-Si, estimate the
electron concentration at which Schottky diode loses its
rectifying characteristics. For the estimate, assume that the
height of the potential barrier a the contact is half the value
of the band gap at room temperature (Eg = 1.12 eV), m*e = mo,
T=300K, and &s; = 11.9.

Solution: (2.7)
@q=0.74V,n=28x10cm™3,

Part (17) Solved PROBLEMS



solar cell

Example 4.6

A 1 cm? silicon solar cell has a saturation current of 1012 A
and is illuminated with sunlight yielding a short-circuit
photocurrent of 25 mA. Calculate the solar cell efficiency and
fill factor.

Solution The maximum power is generated for:
dp Vm/ Vm Vm/
dVa=O= Is(e Vt—l)—lph+V—TIse Vi
where the voltage, Vm, is the voltage corresponding to the
maximum power point. This voltage is obtained by solving
the following transcendental equation

1+ m/Vt
Using iteration and a starting value of 0.5 V one obtains the
following successive values for Vm: Vm = 0.5, 0.542, 0.540 V
and the efficiency equals:

Vm = Vt ln

O. 54 x0.024

[ Pi, 0.1
The current, Im, corresponding to the voltage, Vm, was
calculated using equation (4.6.1) and the power of the sun

was assumed 100 mW/cm?2. The fill factor equals:

U factoy — Vmn _ 0.54x0.024
full factor = - = 562x0.025 o7

where the open circuit voltage is calculated using equation
(4.6.1) and | = 0. The short circuit current equals the
photocurrent

=13%







