Conferences papers

البحث رقم (1)

Published In

2008 5th International Multi-Conference on Systems, Signals and Devices

Title

BLUETOOTH PERFORMANCE IMPROVEMENT OVER DIFFERENT CHANNELS THROUGH CHANNEL CODING

* Faculty Electronic Engineering, Menouf.
** Faculty of Industrial Education, Helwan University

E-mails: mohsenbendary@yahoo.com, abouelazm_atef@yahoo.com, nelfishawy@hotmail.com, fathi_sayed@yahoo.com and farid_shawki@yahoo.com

ABSTRACT

It is known that Bluetooth systems employ a Hamming (15, 10) code for error correction. In this paper, we propose different error correction coding schemes for this purpose. A comparison study between the Hamming (7, 4), the cyclic (15, 11) and the BCH (15, 7) codes is held in the paper to choose an alternative to the Hamming (15, 10) code. The simulation experiments are held over both an Additive White Gaussian Noise (AWGN) channel and a Rayleigh fading channel. The experimental results reveal the superiority of the BCH (15, 7) code to all other coding schemes if a large redundancy is accepted. If the issue of redundancy is of major concern, the Hamming (7,4) code is the best.
Keywords: Block codes, Bluetooth, fading channels.

REFERENCES

Title

Bluetooth Performance Improvement Using Convolutional Codes

M. A. M. Mohamed
Faculty of Industrial Education,
Helwan University, Cairo,
Egypt.
E-mail:
mohsenbendary@yahoo.com

A. E. Abu El-Azm, N.A. El-Fishawy
Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
E-mails:
abouelazm_atef@yahoo.com
nelfishawy@hotmail.com

M. A. R. Eltokhy
Faculty of Industrial Education,
Helwan University, Cairo,
Egypt.
E-mail:
mohsenbendary@yahoo.com

F. Shawki and F. E. Abd El-Samie
Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
E-mails:
Abstract:

In this paper, convolutional codes are used as error correcting codes for Bluetooth packets. The traditional coding scheme in standard Bluetooth packets depends on the Hamming (15,10) code in the payload field of each packet. This paper investigates the use of convolutional codes for this purpose. Two different versions of convolutional codes are studied based on the code constraint length. The simulation experiments are performed for the cases of additive white Gaussian noise (AWGN) and Rayleigh flat fading channels. The simulation results reveal the superiority of convolutional codes to the Hamming (15, 10) code used in the standard Bluetooth packets in the cases of AWGN and flat fading channels.

Index Terms:
— Bluetooth, convolutional code, AWGN channel, wireless communications.

REFERENCES

[5] “IEEE 802.11, the working group setting the standards for wireless LANs.
Italy, July 2001.

Puplished In:

Authorized licensed use limited to: Jazan University. Downloaded on .January 18, 2010 at 07:54 from IEEE Xplore. Restrictions apply

Title

New Single Carrier FDMA System Based On The Discrete Cosine Transform.
Abstract:
In this paper, a new single carrier frequency division multiple access (SC-FDMA) system based on the discrete cosine transform (DCT) for uplink wireless transmissions, is introduced. The time domain expressions of the DCT SC-FDMA signals are derived. The peak to average power ratio (PAPR) of the DCT SC-FDMA signals is compared with that of the discrete Fourier transform (DFT) SC-FDMA and orthogonal frequency division multiple access (OFDMA) signals. Simulation results show that the proposed DCT SC-FDMA system provides a better bit error rate (BER) performance than the DFT SC-FDMA and the OFDMA systems. In addition, it is found that the PAPR of the DCT SC-FDMA signals is lower than that of OFDMA signals.

Index Terms:
SC-FDMA, DCT, OFDMA

REFERENCES:
[10] 3rd Generation Partnership Project (3GPP); Technical specification group radio access network; Physical layer aspects for evolved UTRA (Release 7).

Biographies

Faisal S. Al-kamali received the B.Sc. degree in Electronics and Communications Engineering from the Faculty of Engineering, Baghdad University, Baghdad, Iraq, in 2001. He received the M.Sc. degree in Communication Engineering from the Faculty of Electronic Engineering, Menoufi University, Menouf, Egypt, in 2008. He is
currently working toward the Ph.D. degree in Communication Engineering at Menoufia University, Egypt. His research areas of interest include CDMA Systems, OFDMA Systems, SC-FDMA System, MIMO Systems, Interference Cancellation, and Channel Equalization.

Moawad I. Dessouky received the B.Sc. (Honors) and M.Sc. degrees from the Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 1976 and 1981, respectively, and the Ph.D. from McMaster University, Canada, in 1986. He joined the teaching staff of the Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 1986. He has published more than 140 scientific papers in national and international conference proceedings and journals. He is currently the head of the Dept. Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University. He has received the most cited paper award from Digital Signal Processing journal for 2008. His current research areas of interest include spectral estimation techniques, image enhancement, image restoration, superresolution reconstruction of images, satellite communications, and spread spectrum techniques.

Bassiouny M. Sallam has received the B.Sc. degree from the Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 1975, the M.Sc. degree from the Faculty of Engineering, Cairo University, Cairo, Egypt, in 1982 and the Ph.D. degree from Drexel University, USA, in 1989. He joined the teaching staff of the Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt since 1989. He has published about forty scientific papers in national and international conferences and journals. He has received the most cited paper award from Digital Signal Processing journal for 2008. His current research areas of interest include adaptive signal processing.
techniques, superresolution reconstruction of images, speech processing and spread spectrum communications.

Farid Shawki M. Al-Hosarey has received the B.Sc. (Hons), M.Sc., and PhD. degrees from the Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 1995, 2000 and 2007, respectively. He joined the teaching staff of the Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt since 2008. He is a co-author of many papers in national and international conferences and journals. His current research areas of interest include Channel Coding, Mobile communication Systems, MIMO systems, and Implementation of Digital communications Systems using FPGA.

Fathi E. Abd El-Samie received the B.Sc. (Honors), M.Sc., and PhD. from the Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 1998, 2001, and 2005, respectively. He joined the teaching staff of the Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt, in 2005. He is a co-author of about 70 papers in national and international conference proceedings and journals. He has received the most cited paper award from Digital Signal Processing journal for 2008. His current research areas of interest include image enhancement, image restoration, image interpolation, superresolution reconstruction of images, data hiding, multimedia communications, medical image processing, optical signal processing, and digital communications.
Title

Low-Complexity Equalization Scheme for Uplink MIMO SC-FDMA Systems

F. S. Al-kamali, M. I. Dessouky, B. M. Sallam, F. Shawki and F. E. Abd El-Samie
Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia
University, Menouf, 32952, Egypt.
.fathi_sayed}@yahoo.comEmail: {faisalalkamali, dr_moawad, farid_shawki,
Abstract
In this paper, we propose an efficient low-complexity equalization scheme for multiple-input multiple-output (MIMO) uplink single-carrier frequency division multiple access (SC-FDMA) systems. The proposed scheme avoids the complexity problem associated with the conventional MIMO zero forcing (ZF) equalizer as well as the noise enhancement problem. The matrix inversion process associated with the proposed equalization scheme is performed in two steps to reduce complexity. A regularization term is added in the second step of the matrix inversion to avoid the noise enhancement. Simulation experiments on uplink MIMO SC-FDMA systems show that the proposed equalization scheme provides better performance than that of the ZF equalizer and its complexity is far less than that of the ZF equalizer.

References
Title

Real-Time Audio Signal Transmission Over The ACL Link In Bluetooth Systems.

* Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt.
** Department of Communication Technology, Faculty of Industrial Education, Helwan University, Egypt.
Emails: {mohsenbendary, atef_aboulazm, nawalelfishawy, farid_shawki, fathi_sayed}@yahoo.com.

Abstract:
- In this paper, we propose the transmission of audio signals over the asynchronous connectionless (ACL) link in Bluetooth systems. In traditional Bluetooth systems, audio signals are transmitted over the synchronous connection-oriented (SCO) link, which has a limited data rate. The SCO link requires the transmission of two, four, or six slots for transmitting HV1 packets, HV2 packets, and HV3 packets, respectively. By the proposed approach of transmitting the audio signals over the ACL link, we can use DH or AM packets for audio signal transmission, and enables the transmission of up to 30 bytes in each time slot. Bit level interleavers are suggested for this paper with the proposed implementation to reduce channel effects. Simulation experiments reveal the superiority of the proposed implementation for audio signal transmission over Bluetooth systems.

Keywords:

Bluetooth, audio signals, Interleaving

References

